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ABSTRACT
In this article, we present the restricted numerical for the Laplacian matrix of a
directed graph (digraph). We motivate our interest in the restricted numerical range
by its close connection to the algebraic connectivity of a digraph. Moreover, we show
that the restricted numerical range can be used to characterize digraphs, some of
which are not determined by their Laplacian spectrum. Finally, we identify a new
class of digraphs that are characterized by having a real restricted numerical range.
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1. Introduction

Spectral graph theory has a long and interesting history which intersects the seminal
works on the algebraic connectivity, i.e., the second smallest eigenvalue of the graph
Laplacian [7,10]. Furthermore, the eigenvalues of the graph Laplacian have been used
to characterize graphs and have applications to data mining, image processing, mixing
of Markov chains, chromatic numbers, and much more [16–18,20,21,24]. However, there
has been far less success in the study of the spectra of directed graphs, which is mainly
due to the asymmetry of the associated matrices [15,18].

While there are some results on the spectra of digraphs, see [5] and the references
therein, these results are specific to the adjacency matrix or the (symmetric) Laplacian
matrix for strongly connected digraphs as defined in [8]. A few notable exceptions are
the results in [2,6,22], which apply to the (asymmetric) Laplacian matrix for digraphs.

In this article, we develop a novel approach for characterizing digraphs using the
restricted numerical range of the Laplacian matrix. Until now, the numerical range
has played only a minor role in graph theory, where it has been used to develop
eigenvalue bounds, study the essential spectrum of the Laplace operator, and to model
uncertainty curves in spectral graph theory [1,9,19]. We will show that, in fact, the
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restricted numerical range of the Laplacian matrix is teeming with information about
the underlying digraph. In particular, in Section 2, we demonstrate that the algebraic
connectivity of a digraph can easily be obtained from its restricted numerical range.
In Section 3, we classify several digraphs that are characterized by their restricted
numerical range but not their Laplacian spectrum. Furthermore, in Section 4, we
identify a new class of digraphs that are characterized by having a real restricted
numerical range.

2. The Laplacian Matrix and the Restricted Numerical Range

In this section, we define the Laplacian matrix for digraphs and its restricted numerical
range. We motivate our interest in the restricted numerical range by illustrating its
connection to the algebraic connectivity of a digraph and using it to characterize the
empty, complete, and cycle digraphs.

2.1. The Laplacian Matrix for Digraphs

Let G denote the set of finite simple unweighted digraphs. For each Γ ∈ G, we have
Γ = (V,E), where V = {1, 2, . . . , n} is the vertex set and E ⊆ V × V is the edge set,
and (i, j) ∈ E if and only if there is an edge from i to j.

Given Γ ∈ G, we denote the out-degree of the vertex i ∈ V by d+(i), which is equal
to the number of edges of the form (i, j) ∈ E. Similarly, we denote the in-degree of the
vertex i ∈ V by d−(i), which is equal to the number of edges of the form (j, i) ∈ E.
We define the out-degree matrix as the diagonal matrix D whose ith diagonal entry
is equal to d+(i), for all i = 1, . . . , n. In addition, we define the adjacency matrix
as the (0, 1) matrix A = [aij ]

n
i,j=1, where aij = 1 if and only if the edge (i, j) ∈ E.

Furthermore, we define the Laplacian matrix of Γ by

L = D −A.

Let Γ = (V,E) ∈ G and let V ′ ⊆ V . Then, we define the induced subgraph Γ′ of
Γ as the digraph with vertex set V ′ and edge set E′ = E ∩ (V ′ × V ′). A subgraph
of Γ is strongly connected if for each pair of vertices i, j ∈ V ′, either i = j or there
is a directed path from i to j and a directed path from j to i. A strongly connected
component of Γ is a maximal strongly connected subgraph.

A digraph Γ can be uniquely decomposed into strongly connected components.
Also, the Laplacian matrix, possibly after re-ordering the vertices, can be written in
Frobenius normal form [4]:

L =


L1 L12 · · · L1r

L2 · · · L2r

. . .
...
Lr

 , (1)

where the blocks Lk are irreducible matrices that correspond to the strongly connected
components Γk of Γ. Let Vk denote the vertex set of the strongly connected component
Γk. Then, the (i, j) entry of the (0,−1) submatrix Lkl, 1 ≤ k < l ≤ r, is equal to −1
if and only if there is an edge from i ∈ Vk to j ∈ Vl.
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2.2. The Restricted Numerical Range

In general, the numerical range (field of values) of a complex matrix A is defined as
follows [13,23]:

W (A) = {x∗Ax : x ∈ Cn, ‖x‖ = 1} .

For our purposes, we are interested in the restricted numerical range of the Laplacian
matrix, which we define by

Wr(L) = {x∗Lx : x ⊥ e, ‖x‖ = 1} ,

where e is the all ones vector. Note that e is an eigenvector of L associated with the
zero eigenvalue. For simplicity, we often reference Wr(L) as the restricted numerical
range of a digraph.

Our definition of the restricted numerical range is motivated by its close connection
to the algebraic connectivity for digraphs as defined in [22]. Indeed, let Γ ∈ G and let
L be the Laplacian matrix of Γ. Then, the algebraic connectivity of Γ is defined by

α(Γ) = min
x∈S

xTLx,

where

S = {x ∈ Rn : x ⊥ e, ‖x‖ = 1} .

Another related and useful quantity is

β(Γ) = max
x∈S

xTLx.

We summarize this connection and other basic properties below. For the remainder
of this section, let Q be a real n × (n − 1) orthonormal matrix whose columns are
orthogonal to e.

Proposition 2.1. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then, the
following properties hold.

(i) The restricted numerical range satisfies Wr(L) = W (QTLQ).
(ii) The set Wr(L) is invariant under re-ordering of the vertices of Γ.

(iii) The eigenvalues of L are contained in Wr(L), except for the zero eigenvalue
associated with the eigenvector e.

(iv) The minimum real part of Wr(L) is equal to α(Γ), and the maximum real part
of Wr(L) is equal to β(Γ).

Proof.

(i) This result follows directly from the fact that Q acts as a length preserving
bijection between Cn−1 and the vectors in Cn that are orthogonal to e.

(ii) The re-ordering of the vertices of Γ corresponds to a permutation matrix P such
that P TLP is the Laplacian matrix of the re-ordered digraph. Furthermore, PQ
is a real n×(n−1) orthonormal matrix with columns orthogonal to e. Therefore,

Wr(L) = W (QTP TLPQ) = Wr(P
TLP ).
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(iii) Since e is an eigenvector of L associated with the zero eigenvalue, we have

[Q ê]TL[Q ê] =

[
QTLQ QTLê

êTLQ êTLê

]
=

[
QTLQ 0

êTLQ 0

]
,

where ê = e/
√
n. Therefore, the eigenvalues of L are the union of the eigenvalues

of QTLQ and the zero eigenvalue associated with the eigenvector e. The result
follows from noting that Wr(L) contains the eigenvalues of QTLQ.

(iv) By [13,23, Theorem 9], the minimum and maximum real parts of Wr(L) is equal
to the minimum and maximum eigenvalues, respectively, of the symmetric part
of QTLQ. These values are attained in Wr(L) by the associated eigenvectors of
the symmetric part of QTLQ. The result follows since these eigenvectors can be
taken to be real.

2.3. Examples

In Figure 1, the empty and complete digraph on 6 vertices are shown. It is clear that
both the empty and complete digraphs are determined by their Laplacian spectrum,
with σ(L) =

{
0(n)

}
and σ(L) =

{
0, n(n−1)

}
, respectively, where the exponent denotes

the algebraic multiplicity of the eigenvalue. We use these results to show that both the
empty and complete digraphs are characterized by their restricted numerical range.
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Figure 1. Empty and complete digraph on 6 vertices.

Theorem 2.2. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then, Γ is an
empty digraph if and only if Wr(L) = {0}.

Proof. Suppose that Γ is an empty digraph. Then, x∗Lx = 0 for all x ∈ Cn and it
follows that Wr(L) = {0}.

Conversely, suppose that Wr(L) = {0}. Then, it follows that σ(L) =
{

0(n)
}

and,
therefore, Γ is an empty digraph.

Theorem 2.3. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then, Γ is a
complete digraph if and only if Wr(L) = {n}.

Proof. Suppose that Γ is a complete digraph. Then, L is a symmetric matrix with
spectrum σ(L) =

{
0, n(n−1)

}
. It follows that the eigenvectors of L associated with

the eigenvalue n form an orthonormal basis for the subspace of vectors in Cn that are
orthogonal to e. Hence, Wr(L) = {n}.

Conversely, suppose that Wr(L) = {n}. Then, it follows that σ(L) =
{

0, n(n−1)
}

and, therefore, Γ is a complete digraph.
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Next, consider a directed cycle, as shown on 6 vertices in Figure 2. In what follows,
we show that the directed cycle is characterized by its Laplacian spectrum and its
restricted numerical range. Throughout, we denote the imaginary unit

√
−1 by i.
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Figure 2. Directed cycle on 6 vertices.

Theorem 2.4. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then, Γ is a directed
cycle if and only if

σ(L) =
{

1− ei2πj/n : j = 0, 1, . . . , n− 1
}
. (2)

Proof. Suppose that Γ is a directed cycle. Then, possibly after re-ordering the vertices,
L is a circulant matrix whose first column vector is equal to [1, 0, . . . , 0,−1]T . As a
circulant matrix with first column vector defined above, it is well-known that the
eigenvalues of L satisfy (2), e.g., see [11, Section 2.2].

Conversely, suppose that the eigenvalues of L satisfy (2). In what follows, we show
that L = I −A, where A is the adjacency matrix of Γ. Therefore,

σ(A) =
{
ei2πj/n : j = 0, 1, . . . , n− 1

}
.

and it follows from [3, Theorem 2.2.20] that A has index of cyclicity equal to n. Hence,
Γ is a directed cycle.

For the sake of contradiction, suppose that d+(i) = 0 for some i ∈ V . Then, L can
be written in the Frobenius normal form (1) as

L =


L1 L12 · · · L1r

L2 · · · L2r

. . .
...
0

 ,
where, for each k = 1, . . . , r − 1, Lk is an irreducible non-singular M -matrix. Hence,
by [3, Theorem 6.2.3 (N38)], L−1k exists, is non-negative, and is irreducible. Also, by the

Perron-Frobenius theorem [3, Theorem 2.1.4], the spectral radius ρ(L−1k ) is a simple

eigenvalue of L−1k . Now, let Lk denote the block with eigenvalue

λ = 1− ei2π/n,

which is the smallest, in magnitude, non-zero eigenvalue of L. Then, ρ(L−1k ) = |λ|−1

must be an eigenvalue of L−1k , which contradicts the eigenvalues of L satisfying (2).
Therefore, d+(i) 6= 0 for all i ∈ V . Furthermore, since tr (L) = n, we have d+(i) = 1

for all i ∈ V . Hence, L = I −A, and the result follows.
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In Lemma 2.5, we show that the normality of L implies the normality of QTLQ.
Note that the converse of this result does not hold. Then, in Theorem 2.6, we prove
that a directed cycle is characterized by its restricted numerical range.

Lemma 2.5. Let L be the Laplacian matrix of any Γ ∈ G. If L is normal, then QTLQ
is normal.

Proof. Suppose that L is a normal matrix. Then, L has an orthonormal eigenvector
basis for Cn. Since e is always an eigenvector of L, we denote this eigenvector basis
by {v1, . . . ,vn}, where vn = e/

√
n. It follows that for each j = 1, . . . , n− 1 there is a

unique xj ∈ Cn−1 such that Qxj = vj . Hence, {x1, . . . ,xn−1} forms an orthonormal
basis for Cn−1, where each xj is an eigenvector of QTLQ. Therefore, QTLQ is normal.

Theorem 2.6. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then, Γ is a directed
cycle if and only if Wr(L) is the complex polygon with vertices{

1− ei2πj/n : j = 1, . . . , n− 1
}
. (3)

Proof. Suppose that Γ is a directed cycle on n vertices. Then, L is a circulant matrix
with eigenvalues that satisfy (2). Furthermore, as a circulant matrix, it is well-known
that the Fourier matrix provides a unitary diagonalization of L, e.g., see [11, Section
2.2]. Therefore, L is a normal matrix and, by Lemma 2.5, it follows that QTLQ is a
normal matrix. As a normal matrix, it follows that W (QTLQ) is equal to the convex
hull of σ(QTLQ) [13,23, Theorem 3], where σ(QTLQ) is equal to the set in (3).

Conversely, suppose that W (QTLQ) is the complex polygon with vertices in (3).
By [13,23, Theorem 13], the vertices of this complex polygon are the eigenvalues of
QTLQ. Therefore, σ(L) satisfies (2), and it follows from Theorem 2.4 that Γ is a
directed cycle.

We conclude this section with a corollary that follows from Theorems 2.2, 2.3, 2.6
and Proposition 2.1 (iv.). We prove the converse of parts (i.) and (ii.) in Section 3.

Corollary 2.7. Let Γ ∈ G.

(i) If Γ is an empty digraph, then

α(Γ) = β(Γ) = 0.

(ii) If Γ is a complete digraph, then

α(Γ) = β(Γ) = n.

(iii) If Γ is a directed cycle, then

α(Γ) = 1− Re
(
ei2π/n

)
and

β(Γ) =

{
2 if n is even,

1− Re
(
eiπ(n−1)/n

)
if n is odd.
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3. Digraphs with Singleton Restricted Numerical Range

In the previous section, we saw that the empty and complete digraphs have a singleton
restricted numerical range. In this section, we characterize the class of digraphs that
have a singleton restricted numerical range. Furthermore, we show that this class of
digraphs can be completely described by a directed join.

Definition 3.1. The directed join of the digraphs Γ = (V,E) and Γ′ = (V ′, E′) is
defined by

Γ
�∨ Γ′ =

(
V ∪ V ′, E ∪ E′ ∪

{
(i, j) : i ∈ V, j ∈ V ′

})
.

Note that we allow Γ or Γ′ to be the null digraph (zero vertices), in which case the
directed join is a trivial operation that does not change the digraph of largest order.

We define a k-imploding star on n vertices, for k ∈ {0, 1, . . . , n}, by the directed join
En−k

�∨ Kk, where En−k is an empty digraph (zero edges) on (n− k) vertices and Kk

is a complete digraph on k vertices. Examples of 1-imploding and 2-imploding stars
on 6 vertices are shown in Figure 3.
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Figure 3. Examples of 1-imploding (left) and 2-imploding (right) stars on 6 vertices.

Theorem 3.2. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then, Γ is a
k-imploding star if and only if Wr(L) = {k}.

Proof. Suppose that Γ is a k-imploding star. Then, possibly after re-ordering the
vertices, L can be written in the form

L = kI − e

 n∑
j=n−k+1

ej

T

,

where I is the identity matrix and ej is the jth standard basis vector for Rn. Let
x ∈ Cn be orthogonal to e. Then,

x∗Lx = x∗

kx− e

 n∑
j=n−k+1

ej

T

x

 = kx∗x.

It immediately follows that Wr(L) = {k}.
Conversely, suppose that Wr(L) = {k}. In addition, let x = (ei − ej) /

√
2, for some
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1 ≤ i < j ≤ n. Then, since x is orthogonal to e, we have

k = xTLx

=
1

2
(ei − ej)

T (Lei − Lej)

=
1

2
(lii + ljj − lij − lji),

where L = [lij ]
n
i,j=1. Hence,

2k = lii + ljj − lij − lji (4)

for all 1 ≤ i < j ≤ n. Also, since α(Γ) = β(Γ) = k, it follows from [22, Lemma 8] that

d+(i) = k − d−(i)

n− 1
,

for all vertices i ∈ V . Since lii = d+(i) must be an integer and k is an integer, we have
lii ∈ {k − 1, k} for all i = 1, . . . , n.

Now, let s be a non-negative integer such that lii = k, s times, and lii = (k − 1),
(n− s) times. Since σ(L) =

{
0, k(n−1)

}
, the trace of L gives us

ks+ (k − 1)(n− s) = k(n− 1),

from which it follows that s = (n − k). Therefore, we can re-order the vertices such
that lii = k, for 1 ≤ i ≤ (n− k), and lii = (k− 1), for (n− k+ 1) ≤ i ≤ n. Hence, after
this re-ordering of vertices, we can write the Laplacian matrix in the form

L =

[
L11 L12

L21 L22

]
,

where L11 is a (n− k)× (n− k) matrix whose diagonal entries are equal to k, and L22

is a k×k matrix whose diagonal entries are equal to (k−1). If (n−k+1) ≤ i < j ≤ n,
then (4) implies that

2k = 2(k − 1)− lij − lji,

from which it follows that lij = lji = −1. Hence, L22 is the Laplacian matrix of Kk

and L21 is a zero matrix. Furthermore, applying (4) to vertices 1 ≤ i < j ≤ (n − k),
gives us L11 = kI. Hence, every entry in L12 is equal to −1, and it follows that Γ is a
k-imploding star.

By Theorem 3.2, we know that every k-imploding star is in the class of digraphs with
a singleton restricted numerical range. In fact, Theorem 3.3 implies that k-imploding
stars are the only digraphs in this class. Before proving this result, note that, since L
is real, Wr(L) is symmetric with respect to the real axis and, hence, we only need to
consider real singleton restricted numerical ranges. Also, note that the complement of
the digraph Γ = (V,E) is defined as the digraph Γ = (V,E), where

E = {(i, j) ∈ V × V : (i, j) /∈ E} .
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Theorem 3.3. Let Γ ∈ G and let L be the Laplacian matrix of Γ. If Wr(L) = {k} for
some k ∈ R, then k must be an integer between 0 and n (inclusive). Therefore, Γ is a
k-imploding star.

Proof. As a generalM -matrix, the real part of every eigenvalue of L is non-negative [3,
Theorem 6.4.6(E11)]. Since k must be an eigenvalue of L, it follows that k ≥ 0.

For any Γ ∈ G, by [22, Lemma 4], we have

α(Γ) = n− β(Γ).

Also, β(Γ) must be non-negative; otherwise, the Laplacian spectrum of Γ would lie in
the left-half of the complex plane, which would contradict [3, Theorem 6.4.6(E11)].
Therefore, k = α(Γ) ≤ n.

Now, suppose that 0 ≤ k ≤ n is not an integer. Since α(Γ) = β(Γ) = k, it follows
from [22, Lemma 8] that

d+(i) = k − d−(i)

n− 1
,

for all vertices i ∈ V . Since the ith diagonal element of L is equal to d+(i), which must
be an integer, the graph Laplacian can be written in the following form

L = bkcI −A,

where A = [aij ]
n
i,j=1 is the adjacency matrix of Γ. Let x = (ei − ej) /

√
2. Since x is

orthogonal to e, it follows that

k = bkc − xTAx

= bkc −
(
aii + ajj − aij − aji

2

)
= bkc −

(
aij + aji

2

)
.

Note that the above equation is a contradiction if either aij = aji = 0 or aij = aji = 1.
Therefore, aij = 1 or aji = 1, but not both, for all 1 ≤ i < j ≤ n; hence, Γ is a
tournament digraph. Furthermore, since the sum of the entries of L must equal zero,
we know that

bkc =
n− 1

2
.

Hence, n must be an odd integer and

d+(i) = d−(i) =
n− 1

2
,

for all i ∈ V . Therefore, Γ is a regular tournament digraph for which it is well-known,
e.g., see [5, Section 8], that its adjacency matrix, possibly after re-ordering the vertices,
can be written as

A = P + P 2 + · · ·+ P bkc,
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where P is the permutation matrix corresponding to the permutation (2, 3, . . . , n, 1).
Therefore, L is a circulant matrix whose eigenvalues satisfy

σ(L) =

bkc −
bkc∑
s=1

(
ei2πj/n

)s
: j = 0, 1, . . . , n− 1

 ,

which contradicts Wr(L) lying entirely on the real line.

In the proof of Theorem 3.3, we saw that if α(Γ) = β(Γ) is not an integer, then Γ
must be a regular tournament digraph. In particular, the following result clearly holds.

Corollary 3.4. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then Γ is a regular
tournament digraph if and only if n is odd and Wr(L) is a vertical line segment with
real part equal to n/2.

Moreover, from the proofs of Theorems 3.2 and 3.3, we have the following result,
which implies the converse of parts (i.) and (ii.) of Corollary 2.7.

Corollary 3.5. Let Γ ∈ G. Then, α(Γ) = β(Γ) if and only if Γ is a k-imploding star
or a regular tournament digraph. In particular, Γ is a k-imploding star if and only if

α(Γ) = β(Γ) = k ∈ {0, 1, . . . , n},

and Γ is a regular tournament digraph if and only if n is odd and

α(Γ) = β(Γ) =
n

2
.

Finally, it is worth noting that for 1 ≤ k ≤ (n − 2), a k-imploding star is
not characterized by its Laplacian spectrum. Indeed, by simply removing an edge
of the form (i, j) ∈ V (En−k) × V (Kk) and replacing it by an edge of the form
(i, j) ∈ V (En−k)× V (En−k), we obtain a cospectral digraph that is not isomorphic to
En−k

�∨ Kk. For example, consider the digraph in Figure 4, which is cospectral but
not isomorphic to the 1-imploding star.

1
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Figure 4. Digraph that is cospectral but not isomorphic to the 1-imploding star.

The above example raises the question: Are there digraphs that are characterized
by their Laplacian spectrum, but are not characterized by their restricted numerical
range? We suspect the answer to this question is no, which would make the restricted
numerical range a more robust tool for characterizing digraphs. For instance, by the
elliptical range theorem [14], the restricted numerical range of a digraph on 3 vertices
is an ellipse with foci equal to the eigenvalues of the Laplacian not associated with
e. Thus, if two digraphs on 3 vertices are characterized by their Laplacian spectrum,
then they must be characterized by their restricted numerical range.
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4. Digraphs with Real Restricted Numerical Range

In the previous section, we characterized the class of digraphs that have a singleton
restricted numerical range. In this section, we extend that characterization to include
all digraphs with a real restricted numerical range. Note that every digraph in G on 1 or
2 vertices is a k-imploding star and, therefore, must have a real restricted numerical
range. Hence, we may assume that we are working with digraphs with at least 3
vertices. In Theorem 4.2, we show that the digraphs with real restricted numerical
range are balanced in the following sense.

Definition 4.1. A directed digraph Γ ∈ G with at least 3 vertices is called 3-balanced
if for any three distinct vertices i, j, k ∈ V , we have

aij + ajk + aki = aik + akj + aji, (5)

where A = [aij ]
n
i,j=1 is the adjacency matrix of Γ.

Theorem 4.2. Let Γ ∈ G have at least 3 vertices and let L be the Laplacian matrix
of Γ. Then, Wr(L) ⊂ R if and only if Γ is 3-balanced.

Proof. Let N = {1, 2, . . . , n} and k ∈ N . Then, for all i ∈ N \{k}, define xi = ei−ek.
First, we show that x∗Lx ∈ R for all x ∈ Cn such that x ⊥ e if and only if

xTi Lxj = xTj Lxi, (6)

for all i, j ∈ N \ {k}. Indeed, note that if (6) fails for some i, j ∈ N \ {k}, then

(xi + ixj)
∗ L (xi + ixj) = xTi Lxi + ixTi Lxj − ixTj Lxi + xTj Lxj /∈ R.

To see that (6) is sufficient, note that {xi}i∈N\{k} forms a basis for the subspace of
vectors in Cn that are orthogonal to e. Therefore, for each x ∈ Cn such that x ⊥ e,
we have

x =
∑

i∈N\{k}

cixi,

where the ci are complex scalars for i ∈ N \ {k}. Hence, if (6) holds, then

x∗Lx =
∑

i,j∈N\{k}

cicjx
T
i Lxj

=
∑
i

|ci|2 xTi Lxi +
∑
i<j

(cicj + cicj) xTi Lxj ∈ R,

where c denotes the complex conjugate of the complex scalar c.
With (6) established, the result follows from noting that, for each i, j ∈ N \ {k}, we

have

xTi Lxj = lij − lik − lkj + lkk and xTj Lxi = lji − ljk − lki + lkk.
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As an example, consider the digraphs in Figure 5. Note that both digraphs are 3-
balanced. Hence, by Theorem 4.2, it follows that both digraphs have a real restricted
numerical range. Moreover, note that both digraphs possess a structure very similar
to the k-imploding stars shown in Figure 3. In particular, they are the directed join
of two bidirectional digraphs.
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Figure 5. Digraphs with real restricted numerical range.

It turns out that all 3-balanced digraphs possess this structure. Before proving this
result, we note that a digraph is 3-balanced if and only if its reversal is 3-balanced,
where the reversal of a digraph is obtained by reversing the orientation of all the edges
in the original digraph. Also, a digraph is said to be bidirectional if it is equal to its
reversal.

Theorem 4.3. Let Γ ∈ G have at least 3 vertices. Then, Γ is 3-balanced if and only
if Γ is the directed join of two disjoint bidirectional digraphs in G.

Proof. Suppose that Γ = (V,E) can be written as the directed join

Γ = S
�∨ T,

where S = (Vs, Es) and T = (Vt, Et) are disjoint bidirectional digraphs. Let i, j, k ∈ V .
Note that (5) holds if i, j, k all belong to either Vs or Vt. Therefore, since a graph is
3-balanced if and only if its reversal is 3 balanced, we may assume that i, j ∈ Vs and
k ∈ Vt. In this case, aij = aji, aik = ajk, and aki = akj , which implies that (5) holds.
Thus, Γ is a 3-balanced digraph.

Conversely, suppose that Γ is 3-balanced. In what follows, we use induction on the
number of vertices to show that Γ must be the directed join of two disjoint bidirectional
digraphs in G. The base case, where Γ has exactly 3 vertices, is readily verified.

Suppose that the result holds for all 3-balanced digraphs on n ≥ 3 vertices. Let Γ
be a 3-balanced digraph on (n + 1) vertices. Furthermore, let Γ′ be the subgraph of
Γ formed from the vertex set V ′ = {1, 2, . . . , n}. By the induction hypothesis, there
exists disjoint bidirectional digraphs S′ = (Vs′ , Es′) and T ′ = (Vt′ , Et′) such that

Γ′ = S′
�∨ T ′.

Let k = (n+ 1) and define

S = (Vs′ ∪ {k}, E ∩ ((Vs′ ∪ {k})× (Vs′ ∪ {k})))

and

T = (Vt′ ∪ {k}, E ∩ ((Vt′ ∪ {k})× (Vt′ ∪ {k}))) .
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We split the induction step into two cases: First, when there is an edge from every
vertex in Vs′ to k; second, where there is a vertex in Vs′ that does not connect to k.
Note that if S′ is null, then S contains only the vertex k. Furthermore, in order for Γ
to be 3-balanced it follows that either Γ = T or Γ = S

�∨ T ′. Similarly, if T ′ is null,
then T contains only the vertex k and either Γ = S or Γ = S′

�∨ T . Therefore, during
the induction step, we may assume that both S′ and T ′ are not null.

Consider the first case, i.e., (i, k) ∈ E for all i ∈ Vs′ . If there is an i ∈ Vs′ such
that both (i, k) ∈ E and (k, i) ∈ E, i.e., the edge (i, k) is bidirectional, then every
edge of the form (j, k) ∈ E, where j ∈ Vs′ , must be bidirectional. Otherwise, there
exists a bidirectional edge (i, k) ∈ E and a non-bidirectional edge (j, k) ∈ E, where
i, j ∈ Vs′ , and it follows that the vertices i, j, k violate (5). Hence, if the edge (i, k) is
bidirectional for some i ∈ Vs′ , then S must be a bidirectional digraph. In this case,
(k, j) ∈ E and (j, k) /∈ E for all j ∈ Vt′ . Indeed, if there exists a j ∈ Vt′ for which
(k, j) /∈ E or (j, k) ∈ E, then for any i ∈ Vs′ , the vertices i, j, k violate (5). Therefore,
Γ = S

�∨ T ′, where S and T ′ are disjoint bidirectional digraphs.
Assume that each edge (i, k) ∈ E, where i ∈ Vs′ is not bidirectional. Then, T must

be a bidirectional digraph. Otherwise, there exists a non-bidirectional edge (j, k) ∈ E
or (k, j) ∈ E, where j ∈ Vt′ , and for any i ∈ Vs′ the vertices i, j, k violate (5). Therefore,
Γ = S′

�∨ T , where S′ and T are disjoint bidirectional digraphs.
Consider the second case, i.e., there is an i ∈ Vs′ such that (i, k) /∈ E. Then,

(k, j) ∈ E for all j ∈ Vt′ . Otherwise, if there exists a j ∈ Vt′ such that (k, j) /∈ E, then
the vertices i, j, k violate (5). Furthermore, S must be a bidirectional digraph. Indeed,
suppose for some i ∈ V there exists an edge (i, k) ∈ E which is not bidirectional.
Then, for any j ∈ Vt′ , the vertices i, j, k violate (5). Therefore, Γ = S

�∨ T ′, where S
and T ′ are disjoint bidirectional digraphs.

Corollary 4.4. Let Γ ∈ G and let L be the Laplacian matrix of Γ. Then, Wr(L) ⊂ R
if and only if Γ is the directed join of two disjoint bidirectional digraphs in G.

5. Conclusion

The restricted numerical range of the Laplacian matrix is a novel tool for characterizing
digraphs and studying their algebraic connectivity. In Theorem 3.2 and Corollary 3.4,
we showed that k-imploding stars and regular tournament digraphs are characterized
by their restricted numerical range. Furthermore, in Corollary 3.5, we showed that
both the k-imploding stars and regular tournament digraphs are determined by their
algebraic connectivity, i.e., α and β values. Finally, in Theorem 4.2, we identified a new
class of digraphs that are characterized by having a real restricted numerical range.

Note that the restricted numerical range has the practical advantage of avoiding
the eigenvalue computation of the potentially defective Laplacian matrix. Instead,
the boundary of the numerical range is approximated using complex polygons whose
vertices are determined by the eigenvectors of a Hermitian matrix [12]. Moreover, the
k-imploding stars offer an infinite number of digraphs that are characterized by their
restricted numerical range, but are not characterized by their Laplacian spectrum.

Future research includes the relationship between digraphs that are characterized by
their Laplacian spectrum and those that are characterized by their restricted numerical
range. Also, we are interested in digraphs with a restricted numerical range that is
a complex polygon and digraphs that have negative algebraic connectivity, i.e., their
restricted numerical range intersects the left half of the complex plane.
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