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1 Unboundedness

We have seen that the auxiliary method can be used to identify a feasible basic solution, if
they exist, or to show that a given LP is infeasible. Another issue that the simplex method
can detect is that of an unbounded LP. For example, consider the LP in (1).

maximize z = 3x1 + 8x9

subject to —bx1 + 2z9 < 10, (1)
2$1 — 31’2 S 6,
x; >0, Vie{l,2}

The initial tableau for the LP in (1) is shown in Table 1. Note that the corresponding
basic variables are 3(°) = {3,4} and non-basic variables 7(*) = {1,2}, with basic solution
x(© =10,0,10,6] and 29 = 0.

5 2[1 0 0]10
2 3|0 1 0|6
3 8]0 0 1[0

Table 1: Initial tableau for the LP in (1).

We select 1 as the entering variable with pivot entry as 1 = 2. Applying row operations
results in the tableau shown in Table 2. Note that the corresponding basic variables are
BN = {1,3} and non-basic variables 7(1) = {2, 4}, with basic solution x(!) = [3,0,10,0]
and z() = 9.

0 -4 |1 5 o]10
2 3|0 1 0|6
0 -Z]o 3 1]9

Table 2: Tableau for the LP in (1), after trading x; with x4.



Note that the pivot row of the tableau in Table 2 indicates that we can increase value
of z by increasing the value of xo. However, there are no positive coefficients in the second
column of the tableau. Therefore, trading xo with any basic variable results in a basic
solution that is infeasible, which suggests that no variables place any restriction on the
value of x9; hence, the LP in (1) is unbounded.

2 Cycling

The last issue one might encounter when using the simplex algorithm is that of cycling.
Note that there are only a finite number of possible tableau for any given LOP. Hence,
if the simplex algorithm does not halt it must be due to cycling. The good news is that
in 1977 Robert Bland proved that the use of the least subscript method ensures that the
simplex algorithm will not cycle. Before reviewing this proof, we consider a variant of
Beale’s classical cycling example which demonstrates how the simplex algirthm can cycle
when using the most negative method.
Consider the LP in (2).
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The initial tableau for the LP in (2) is shown in Table 3. Note that the corresponding

basic variables are 3(0) = {5,6,7} and non-basic variables 7(®) = {1,2,3, 4}, with basic
solution x(®) = [0,0,0,0,0,0,1] and 29 = 0.

T —60 -3 9]1 0 0 0]0
1 1
5 -9 —& 3/0 1 0 0|0
0 0 1 0[0 0 1 0|1
3 1
-2 150 —z 6/0 0 0 1]0

Table 3: Initial tableau for the LP in (2).

We select 1 as the entering variable with pivot entry a;; = 1/4. Applying row
operations results in the tableau shown in Table 4. Note that the corresponding basic
variables are $(1) = {1,6,7} and non-basic variables 7(1) = {2, 3,4, 5}, with basic solution
x(1) =10,0,0,0,0,0,1] and 2() = 0.



1 240 —5 36 | 4
0 30 & —15|-2
0 0 1 0|0
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Table 4: Tableau for the LP in (2), after trading x; with z5.

Next, we select x2 as the entering variable with pivot entry as2 = 30. Applying row
operations results in the tableau shown in Table 5. Note that the corresponding basic
variables are $(2) = {1,2,7} and non-basic variables 7(®) = {3,4, 5,6}, with basic solution
x) =10,0,0,0,0,0,1] and 2? = 0.

1 0 £ -—84|-12 8 0 0]0
1 1| _1 1

01 55 -5 |-% 35 0 00

00 1 0|0 0 101

00 —% 18] 1 1 01]0

Table 5: Tableau for the LP in (2), after trading xo with zg.

Next, we select z3 as the entering variable with pivot entry a;3 = 8/25. Applying
row operations results in the tableau shown in Table 6. Note that the corresponding basic
variables are ) = {2,3,7} and non-basic variables 7(®) = {1,4, 5,6}, with basic solution
x®) =10,0,0,0,0,0,1] and 2 = 0.
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Table 6: Tableau for the LP in (2), after trading xz3 with z;.

Next, we select x4 as the entering variable with pivot entry as4 = %. Applying row
operations results in the tableau shown in Table 7. Note that the corresponding basic
variables are () = {3,4,7} and non-basic variables 7 = {1,2,5,6}, with basic solution
x® =10,0,0,0,0,0,1] and 24 = 0.

Next, we select x5 as the entering variable with pivot entry a5 = 50. Applying row
operations results in the tableau shown in Table 8. Note that the corresponding basic
variables are (%) = {4,5,7} and non-basic variables 7(®) = {1,2,3,6}, with basic solution
x®) =10,0,0,0,0,0,1] and 2 = 0.

Next, we select x¢ as the entering variable with pivot entry as ¢ = 1/3. Applying row
operations results in the tableau shown in Table 9. Note that the corresponding basic
variables are °) = {5,6,7} and non-basic variables 7(®) = {1,2,3, 4}, with basic solution



—1% 10500 1 0| 50 =150 0 00
—1 40 0 1| &+ -2 0 0|0
210500 0 0| —-50 150 1 0|1
—3 120 0 0 -1 1 0 1[0

-2 210 & 0|1 -3 0 0]0
1 1 1
=30 -4 1/0 1 0 0]0
0 0 1 0|0 0 1 0|1
7 1

-7 330 & 0/0 -2 0 1]0

Table 8: Tableau for the LP in (2), after trading x5 with x3.

x©) =10,0,0,0,0,0,1] and 26 = 0.

I —60 —% 9]/1 0 0 00
1 1
5 —9 —z% 3/0 1 0 0]0
0 0 1 0]/0 0 1 0|1
3 1
-2 150 —z 6/0 0 0 1]0

Table 9: Tableau for the LP in (2), after trading xz¢ with x4.

3 The Fundamental Theorem of Linear Programming
Now, we are ready to state the fundamental theorem of linear optimization.
Theorem 1. Let P be an LOP in standard form. Then,

a. P is either infeasible, unbounded, or it has a maximum.

b. If P has a feasible solution, then it has a feasible tableau.

c. If P has an optimal solution, then it has a optimal tableau.



