
The Simplex Method

Thomas R. Cameron

January 30, 2026

1 Unboundedness

We have seen that the auxiliary method can be used to identify a feasible basic solution, if
they exist, or to show that a given LP is infeasible. Another issue that the simplex method
can detect is that of an unbounded LP. For example, consider the LP in (1).

maximize z = 3x1 + 8x2

subject to −5x1 + 2x2 ≤ 10,

2x1 − 3x2 ≤ 6,

xi ≥ 0, ∀i ∈ {1, 2}

(1)

The initial tableau for the LP in (1) is shown in Table 1. Note that the corresponding
basic variables are β(0) = {3, 4} and non-basic variables π(0) = {1, 2}, with basic solution
x(0) = [0, 0, 10, 6] and z(0) = 0.

-5 2 1 0 0 10
2 -3 0 1 0 6

-3 -8 0 0 1 0

Table 1: Initial tableau for the LP in (1).

We select x1 as the entering variable with pivot entry a2,1 = 2. Applying row operations
results in the tableau shown in Table 2. Note that the corresponding basic variables are
β(1) = {1, 3} and non-basic variables π(1) = {2, 4}, with basic solution x(1) = [3, 0, 10, 0]
and z(1) = 9.

0 −11
2 1 5

2 0 10
2 -3 0 1 0 6

0 −25
2 0 3

2 1 9

Table 2: Tableau for the LP in (1), after trading x1 with x4.
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Note that the pivot row of the tableau in Table 2 indicates that we can increase value
of z by increasing the value of x2. However, there are no positive coefficients in the second
column of the tableau. Therefore, trading x2 with any basic variable results in a basic
solution that is infeasible, which suggests that no variables place any restriction on the
value of x2; hence, the LP in (1) is unbounded.

2 Cycling

The last issue one might encounter when using the simplex algorithm is that of cycling.
Note that there are only a finite number of possible tableau for any given LOP. Hence,
if the simplex algorithm does not halt it must be due to cycling. The good news is that
in 1977 Robert Bland proved that the use of the least subscript method ensures that the
simplex algorithm will not cycle. Before reviewing this proof, we consider a variant of
Beale’s classical cycling example which demonstrates how the simplex algirthm can cycle
when using the most negative method.

Consider the LP in (2).

maximize z =
3

4
x1 − 150x2 +

1

50
x3 − 6x4

subject to
1

4
x1 − 60x2 −

1

25
x3 + 9x4 ≤ 0,

1

2
x1 − 90x2 −

1

50
x3 + 3x4 ≤ 0,

x3 ≤ 1,

xi ≥ 0, ∀i ∈ {1, 2, 3, 4}

(2)

The initial tableau for the LP in (2) is shown in Table 3. Note that the corresponding
basic variables are β(0) = {5, 6, 7} and non-basic variables π(0) = {1, 2, 3, 4}, with basic
solution x(0) = [0, 0, 0, 0, 0, 0, 1] and z(0) = 0.

1
4 −60 − 1

25 9 1 0 0 0 0
1
2 −90 − 1

50 3 0 1 0 0 0
0 0 1 0 0 0 1 0 1

−3
4 150 − 1

50 6 0 0 0 1 0

Table 3: Initial tableau for the LP in (2).

We select x1 as the entering variable with pivot entry a1,1 = 1/4. Applying row
operations results in the tableau shown in Table 4. Note that the corresponding basic
variables are β(1) = {1, 6, 7} and non-basic variables π(1) = {2, 3, 4, 5}, with basic solution
x(1) = [0, 0, 0, 0, 0, 0, 1] and z(1) = 0.
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1 −240 − 4
25 36 4 0 0 0 0

0 30 3
50 −15 −2 1 0 0 0

0 0 1 0 0 0 1 0 1

0 −30 − 7
50 33 3 0 0 1 0

Table 4: Tableau for the LP in (2), after trading x1 with x5.

Next, we select x2 as the entering variable with pivot entry a2,2 = 30. Applying row
operations results in the tableau shown in Table 5. Note that the corresponding basic
variables are β(2) = {1, 2, 7} and non-basic variables π(2) = {3, 4, 5, 6}, with basic solution
x(2) = [0, 0, 0, 0, 0, 0, 1] and z(2) = 0.

1 0 8
25 −84 −12 8 0 0 0

0 1 1
500 −1

2 − 1
15

1
30 0 0 0

0 0 1 0 0 0 1 0 1

0 0 − 2
25 18 1 1 0 1 0

Table 5: Tableau for the LP in (2), after trading x2 with x6.

Next, we select x3 as the entering variable with pivot entry a1,3 = 8/25. Applying
row operations results in the tableau shown in Table 6. Note that the corresponding basic
variables are β(3) = {2, 3, 7} and non-basic variables π(3) = {1, 4, 5, 6}, with basic solution
x(3) = [0, 0, 0, 0, 0, 0, 1] and z(3) = 0.

25
8 0 1 −525

2 −75
2 25 0 0 0

− 1
160 1 0 1

40
1

120 − 1
60 0 0 0

−25
8 0 0 525

2
75
2 −25 1 0 1

1
4 0 0 −3 −2 3 0 1 0

Table 6: Tableau for the LP in (2), after trading x3 with x1.

Next, we select x4 as the entering variable with pivot entry a2,4 = 1
40 . Applying row

operations results in the tableau shown in Table 7. Note that the corresponding basic
variables are β(4) = {3, 4, 7} and non-basic variables π(4) = {1, 2, 5, 6}, with basic solution
x(4) = [0, 0, 0, 0, 0, 0, 1] and z(4) = 0.

Next, we select x5 as the entering variable with pivot entry a1,5 = 50. Applying row
operations results in the tableau shown in Table 8. Note that the corresponding basic
variables are β(5) = {4, 5, 7} and non-basic variables π(5) = {1, 2, 3, 6}, with basic solution
x(5) = [0, 0, 0, 0, 0, 0, 1] and z(5) = 0.

Next, we select x6 as the entering variable with pivot entry a2,6 = 1/3. Applying row
operations results in the tableau shown in Table 9. Note that the corresponding basic
variables are β(5) = {5, 6, 7} and non-basic variables π(5) = {1, 2, 3, 4}, with basic solution
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−125
2 10500 1 0 50 −150 0 0 0

−1
4 40 0 1 1

3 −2
3 0 0 0

125
2 −10500 0 0 −50 150 1 0 1

−1
2 120 0 0 −1 1 0 1 0

Table 7: Tableau for the LP in (2), after trading x4 with x2.

−5
4 210 1

50 0 1 −3 0 0 0
1
6 −30 − 1

150 1 0 1
3 0 0 0

0 0 1 0 0 0 1 0 1

−7
4 330 1

50 0 0 −2 0 1 0

Table 8: Tableau for the LP in (2), after trading x5 with x3.

x(6) = [0, 0, 0, 0, 0, 0, 1] and z(6) = 0.

1
4 −60 − 1

25 9 1 0 0 0 0
1
2 −90 − 1

50 3 0 1 0 0 0
0 0 1 0 0 0 1 0 1

−3
4 150 − 1

50 6 0 0 0 1 0

Table 9: Tableau for the LP in (2), after trading x6 with x4.

3 The Fundamental Theorem of Linear Programming

Now, we are ready to state the fundamental theorem of linear optimization.

Theorem 1. Let P be an LOP in standard form. Then,

a. P is either infeasible, unbounded, or it has a maximum.

b. If P has a feasible solution, then it has a feasible tableau.

c. If P has an optimal solution, then it has a optimal tableau.
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