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1 Sets

A set is a repetition-free, unordered collection of objects. An object that belongs to a set is called an element
of that set. We denote membership to a set A by x ∈ A. If x is not a member of A, we write x /∈ A. The
number of elements in A, denoted by |A|, is called the cardinality of A. A set is finite if its cardinality is an
integer; otherwise, the set is infinite. The empty set is the set with no members, which we denote by ∅.

Let A and B be sets. We say that A is a subset of B, denoted by A ⊆ B, if every element of A is also
an element of B. If there is an element of B that is not in A, then A is a proper subset of B, which we
denote by A ⊊ B. We say that A is equal to B, denoted by A = B, if A ⊆ B and B ⊆ A. To prove that
A ⊆ B, we must prove the following implication x ∈ A ⇒ x ∈ B. To prove that A = B, we must prove both
implications x ∈ A ⇒ x ∈ B and x ∈ B ⇒ x ∈ A.

In Proposition 1.1 we give an example of proving set equality. Note that the set of integers is denoted by
Z. Given n ∈ Z, we say that n is even if n = 2k for some k ∈ Z, and n is odd if n = 2k + 1 for some k ∈ Z.

Proposition 1.1. Let A = {n ∈ Z : n is even} and B = {n ∈ Z : n = a+ b, where a and b are odd}. Then,
A = B.

Proof. First, we show that A ⊆ B. To this end, let n ∈ A. Then, n = 2k = k + k for some k ∈ Z. If k is
odd, then it is clear that n ∈ B. Otherwise, a = k + 1 and b = k − 1 are both odd and n = a + b, which
implies that n ∈ B.

Second, we show that B ⊆ A. To this end, let n ∈ B. Then, n = a + b for some odd integers a and b.
Since a and b are both odd, there exist integers k and k′ such that a = 2k + 1 and b = 2k′ + 1. Therefore,
n = a+ b = 2(k + k′ + 1) is even.

2 Set Operations

Let A and B be sets. The union of A and B, denoted A ∪ B, is the set of all elements in A or B. The
intersection of A and B, denoted A∩B, is the set of all elements in both A and B. We can write the union
and intersection as follows

A ∪B = {x : x ∈ A ∧ x ∈ B} , A ∩B = {x : x ∈ A ∨ x ∈ B} .

The union and intersection have various algebraic properties as outlined in Proposition 2.1.

Proposition 2.1. Let A, B, and C denote sets. Then,

(a) A ∪B = B ∪A and A ∩B = B ∩A

(b) A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C

(c) A ∪ ∅ = A and A ∩ ∅ = ∅

(d) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Proof. We will prove that
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) ,

the remaining properties will be left as exercises.
Suppose that x ∈ A ∪ (B ∩ C). Then, x ∈ A or x ∈ B ∩ C. If x ∈ A, then x ∈ A ∪ B and x ∈ A ∪ C,

which implies that x ∈ (A ∪B) ∩ (A ∪ C). If x ∈ B ∩ C, then x ∈ B and x ∈ C. Therefore, x ∈ A ∪B and
x ∈ A ∪ C, which implies that x ∈ (A ∪B) ∩ (A ∪ C).

Conversely, suppose that x ∈ (A ∪B)∩ (A ∪ C). Then, x ∈ (A ∪B) and x ∈ (A ∪ C), which implies that
x ∈ A or x ∈ B ∩ C. Therefore, x ∈ A ∪ (B ∩ C).

The set difference, denoted A−B or A \B, is the set of all elements in A that are not in B, that is,

A−B = {x ∈ A : x /∈ B} .

We say that A and B are disjoint if A ∩ B = ∅. In this case, we have A − B = A and B − A = B. In
Theorem 2.2, we state DeMorgan’s law for sets.

Theorem 2.2 (DeMorgan’s Law). Let A, B, and C be sets. Then,

A− (B ∪ C) = (A−B) ∩ (A− C)

and
A− (B ∩ C) = (A−B) ∪ (A− C) .

3 Relations

The ordered pair (a, b) is an ordered set of two elements where

(a, b) = (c, d) ⇔ a = c ∧ b = d.

We can use sets to define an ordered pair as follows

(a, b) = {a, {a, b}} .

Let A and B be sets. The Cartesian product of A and B, denoted A× B, is the set of all ordered pairs
(a, b), where a ∈ A and b ∈ B, that is,

A×B = {(a, b) : a ∈ A ∧ b ∈ B}

A relation bewteen A and B is any subset R ⊆ A × B. We say that a ∈ A and b ∈ B are related by R if
(a, b) ∈ R. We say that the relation R ⊆ A×A is an equivalence relation if the following properties holds

(a) Reflexive: for all x ∈ A, (x, x) ∈ R

(b) Symmetric: if (x, y) ∈ R, then (y, x) ∈ R

(c) Transitive: if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

Given an equivalence relation R on the set A, it is natural to group the elements that are related to a
particular element. More precisely, we define the equivalence class, with respect to R, of x ∈ A by

Ex = {y ∈ A : (x, y) ∈ R} .

The equivalence classes form a partition of A. In general, a partition of A is a set P of non-empty subsets
of A such that

(a) for all x ∈ A, there exists a P ∈ P such that x ∈ P ,

(b) for all P, P ′ ∈ P, either P = P ′ or P ∩ P ′ = ∅.

Note that any member of P is called a piece of the partition. Moreover, given a partition P of the set A, we
can define an equivalence relation R as follows: (x, y) ∈ R if and only if x and y are in the same piece of the
partition P.
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4 Functions

Let A and B be sets. A funciton between A and B is a non-empty relation f ⊆ A×B such that if (a, b) ∈ f
and (a, b′) ∈ f then b = b′. The domain and range of f , denoted dom (f) and rng (f), respectively, is defined
as follows

dom (f) = {a ∈ A : ∃b ∈ B ∋ (a, b) ∈ f}
rng (f) = {b ∈ B : ∃a ∈ A ∋ (a, b) ∈ f}

The set B is referred to as the codomain of f . If the domain of f contains all of A, we say that f is a
function from A into B and we write f : A → B.

A function f is surjective if rng (f) = B and is injective if f(a) = f(a′) only when a = a′. Moreover, f
is bijective if it is injective and surjective. For example, let f(x) = x2. Then, f : R → R is neither injective
nor surjective; f : R → [0,∞) is surjective but not injective; f : [0,∞) → [0,∞) is bijective.

Let A, B, and C be sets. Given functions f : A → B and g : B → C, the composition is defined by

g ◦ f = {(a, c) ∈ A× C : ∃b ∈ B ∋ (a, b) ∈ f ∧ (b, c) ∈ g} .

The identity function on A is defined by

iA = {(a, a) : a ∈ A} .

Suppose that f : A → B is a bijection. Then, the inverse function is defined by

f−1 = {(b, a) : (a, b) ∈ f} .

Theorem 4.1. Let A and B be sets and let f : A → B be a bijection. Then, f−1 is a bijective function from
B onto A. Moreover, the following compositions hold

f−1 ◦ f = ia and f ◦ f−1 = iB.
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