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1 Sets

A set is a repetition-free, unordered collection of objects. An object that belongs to a set is called an element
of that set. We denote membership to a set A by x € A. If z is not a member of A, we write x ¢ A. The
number of elements in A, denoted by |A|, is called the cardinality of A. A set is finite if its cardinality is an
integer; otherwise, the set is infinite. The empty set is the set with no members, which we denote by 0.

Let A and B be sets. We say that A is a subset of B, denoted by A C B, if every element of A is also
an element of B. If there is an element of B that is not in A, then A is a proper subset of B, which we
denote by A C B. We say that A is equal to B, denoted by A = B, if A C B and B C A. To prove that
A C B, we must prove the following implication z € A = x € B. To prove that A = B, we must prove both
implications x € A= x € Bandx € B=x € A.

In Proposition [I.1] we give an example of proving set equality. Note that the set of integers is denoted by
Z. Given n € Z, we say that n is even if n = 2k for some k € Z, and n is odd if n = 2k 4 1 for some k € Z.

Proposition 1.1. Let A={n € Z: n is even} and B={n €Z: n=a+ b, where a and b are odd}. Then,
A=B.

Proof. First, we show that A C B. To this end, let n € A. Then, n = 2k = k + k for some k € Z. If k is
odd, then it is clear that n € B. Otherwise, a = k+ 1 and b = k — 1 are both odd and n = a + b, which
implies that n € B.

Second, we show that B C A. To this end, let n € B. Then, n = a + b for some odd integers a and b.
Since a and b are both odd, there exist integers k and &’ such that a = 2k + 1 and b = 2k’ + 1. Therefore,
n=a+b=2(k+k +1) is even. O

2 Set Operations

Let A and B be sets. The union of A and B, denoted A U B, is the set of all elements in A or B. The
intersection of A and B, denoted AN B, is the set of all elements in both A and B. We can write the union
and intersection as follows

AUB={z:z € ANxeB}, AnB={x:2€ AVz e B}.
The union and intersection have various algebraic properties as outlined in Proposition [2.1
Proposition 2.1. Let A, B, and C' denote sets. Then,
(a) AUB=BUA and ANB=BNA
(b)) AUBUC)=(AUB)UC and AN(BNC)=(AnB)NnC
(c) AUD=A and AND =10
(d) AU(BNC)=(AUB)N(AUC) and AN(BUC)=(ANB)U(ANC)



Proof. We will prove that
AUu(BNC)=(AUB)N(AUC),

the remaining properties will be left as exercises.

Suppose that © € AU(BNC). Then, z € Aorx € BNC. If € A, thenz € AUB and z € AUC,
which implies that z € (AUB)N(AUC). If z € BN C, then x € B and € C. Therefore, x € AU B and
x € AUC, which implies that z € (AU B) N (AU C).

Conversely, suppose that x € (AU B)N(AUC). Then, € (AU B) and = € (AU C), which implies that
x € Aorx € BNC. Therefore, x € AU(BNC). O

The set difference, denoted A — B or A\ B, is the set of all elements in A that are not in B, that is,
A—-B={x€ A:z ¢ B}.

We say that A and B are disjoint if AN B = (). In this case, we have A— B = Aand B— A= B. In
Theorem [2.2] we state DeMorgan’s law for sets.

Theorem 2.2 (DeMorgan’s Law). Let A, B, and C be sets. Then,
A—(BUC)=(A-B)Nn(A-0C)

and
A—(BNC)=(A-B)U(4A-0C).

3 Relations

The ordered pair (a,b) is an ordered set of two elements where
(a,b) = (¢,d) ©@a=cAb=d.
We can use sets to define an ordered pair as follows
(a,b) = {a,{a,b}}.

Let A and B be sets. The Cartesian product of A and B, denoted A x B, is the set of all ordered pairs
(a,b), where a € A and b € B, that is,

Ax B={(a,b):ac ANb<c B}

A relation bewteen A and B is any subset R C A x B. We say that a € A and b € B are related by R if
a,b) € R. We say that the relation R C A x A is an equivalence relation if the following properties holds

(

(a) Reflexive: for all z € A, (z,x) € R

(b) Symmetric: if (x,y) € R, then (y,z) € R

(c¢) Transitive: if (z,y) € R and (y, 2) € R, then (z,2) € R.

Given an equivalence relation R on the set A, it is natural to group the elements that are related to a
particular element. More precisely, we define the equivalence class, with respect to R, of x € A by

E.,={ye A: (z,y) € R}.

The equivalence classes form a partition of A. In general, a partition of A is a set P of non-empty subsets
of A such that

(a) for all x € A, there exists a P € P such that z € P,
(b) for all P,P" € P, either P =P’ or PN P = 0.

Note that any member of P is called a piece of the partition. Moreover, given a partition P of the set A, we
can define an equivalence relation R as follows: (z,y) € R if and only if x and y are in the same piece of the
partition P.



4 Functions

Let A and B be sets. A funciton between A and B is a non-empty relation f C A x B such that if (a,b) € f
and (a,b’) € f then b =1¥'. The domain and range of f, denoted dom (f) and rng (f), respectively, is defined
as follows

dom(f)={a€A: e B > (a,b) € f}
mg(f)={beB:Jac A > (a,b) € f}

The set B is referred to as the codomain of f. If the domain of f contains all of A, we say that f is a
function from A into B and we write f: A — B.

A function f is surjective if rng (f) = B and is injective if f(a) = f(a’) only when a = a’. Moreover, f
is bijective if it is injective and surjective. For example, let f(z) = 22. Then, f: R — R is neither injective
nor surjective; f: R — [0,00) is surjective but not injective; f: [0,00) — [0, 00) is bijective.

Let A, B, and C be sets. Given functions f: A — B and g: B — C, the composition is defined by

gof={(a,c)e AxC:3be B > (a,b) € fA(bc)€g}.
The identity function on A is defined by
ia={(a,a):a€ A}.
Suppose that f: A — B is a bijection. Then, the inverse function is defined by
f7h=A{(b,a): (a,b) € f}.

Theorem 4.1. Let A and B be sets and let f: A — B be a bijection. Then, f~' is a bijective function from
B onto A. Moreover, the following compositions hold

flof=i,and foft=ig.
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