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1 Sequences of Rational Numbers

A rational sequence is a function s : N → Q We denote the nth element of the sequence by s(n) = sn We
may also denote the sequence by

(sn)
∞
n=1 = (s1, s2, s3, . . .) .

A rational sequence of partial sums is a sequence where the nth term is defined by the sum of the first n
terms in a rational sequence, that is,

sn =

n∑
k=1

ak,

where ak ∈ Q for all k ∈ N.
A rational sequence s : N → Q is a Cauchy sequence if for all rational ϵ > 0 there is a rational N such

that
m,n > N ⇒ |sn − sm| < ϵ.

As an example, (1/n)
∞
n=1 is a sequence of rational numbers. This rational sequence is a Cauchy sequence

since for all rational ϵ > 0, N = 2/ϵ satisfies

m,n > N ⇒
∣∣∣∣ 1n − 1

m

∣∣∣∣ < ϵ.

Moreover, this sequence coverges to 0. As another example, consider the following rational sequence of
partial sums (

n∑
k=1

(−4)k+1

2k − 1

)∞

n=1

.

By the alternating series test, this sequence of partial sums converges over the reals and is therefore a Cauchy
sequence. However, this sequence converges to π, which is an example of an irrational number, that is, a
real number that cannot be represented as a fraction of integers. The irrational numbers are what’s missing
from the rational numbers making them insufficient for the study of calculus.

Lemma 1.1 shows that every rational Cauchy sequence is bounded, which is used to esablish the sum and
product of rational Cauchy sequences in Theorem 1.2.

Lemma 1.1. Every rational Cauchy sequence is bounded.

Proof. Let s : N → Q be a rational Cauchy sequence. Let ϵ = 1. Then, there exists a N ∈ N such that

m,n > N ⇒ |sn − sm| < 1.

. Now, fix m > N . Then, |sn| < |sm|+ 1 for all n > N . Define

M = max {|s1| , |s2| , . . . , |sN | , |sm|+ 1} .

Then, |sn| ≤ M for all n ∈ N. Therefore, the sequence s is bounded.

Theorem 1.2. Let x : N → R and y : N → R. Then, x + y = (xn + yn)
∞
n=1 and x · y = (xn · yn)∞n=1 are

Cauchy sequences.
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2 Properties of the Real Numbers

The real numbers are defined by

R = {±d0.d1d2d3 . . . : 0 ≤ di ≤ 9} .

Given the set of rational Cauchy sequences, the set of real numbers can be constructed using equivalence
classes. Let S denote the set of all rational Cauchy sequences. Define the equivalence relation R on the set
S × S as follows

((xn)
∞
n=1, (yn)

∞
n=1) ∈ R ⇔ lim

n→∞
(xn − yn) = 0,

where limn→∞ (xn − yn) = 0 if for all ϵ > 0 there exists an N such that n > N ⇒ |xn − yn| < ϵ. Then, each
real number corresponds to an equivalence class with respect to R. For example, the number 0 corresponds
to the equivalence class

E(1/n)∞n=1
=
{
s ∈ S : lim

n→∞
(sn − 1/n) = 0

}
.

Similarly, the number 1 corresponds to the equivalence class E(1−1/n)∞n=1
and the number −1 corresponds to

the equivalence class E(−1−1/n)∞n=1
. In general, given any number d = d0.d1d2d3 · · · , the sequence

x = (d0.d1, d0.d1d2, d0.d1d2d3, . . .)

generates the equivalence class Ex corresponding to the number d.
In what follows, we use the sum and product of rational Cauchy sequences described in Theorem 1.2

to define the sum and product of real numbers. Let d and d′ denote real numbers corresponding to the
equivalence classes Ex and Ex′ , respectively. Then, we define the addition operation d + d′ by the real
number corresponding to the equivalence class Ex+x′ , where x + x′ denotes the sum of rational Cauchy
sequences. Moreover, we define the multiplication operation d · d′ by the real number corresponding to the
equivalence class Ex·x′ , where x · x′ denotes the product of rational Cauchy sequences.

Note that the subtraction operation d − d′ is defined by d + (−d′), where −d′ is the real number cor-
responding to the equivalence class E−x′ and −x′ = (−x′

n)
∞
n=1 is a rational Cauchy sequence. Moreover,

if d′ ̸= 0, then the sequence x′ can be selected to have only non-zero terms. Hence, we define the division
operation d/d′, where d′ ̸= 0, by d · (1/d′), where 1/d′ is the real number corresponding to the equivalence
class E1/x′ and 1/x′ = (1/x′

n)
∞
n=1 is a rational Cauchy sequence.

From these definitions it can be shown that the real numbers satisfy the following properties.

(a) Closure: Given any a, b ∈ R, a+ b ∈ R and a · b ∈ R.

(b) Commutative: Given any a, b,∈ R, a+ b = b+ a and a · b = b · a.

(c) Associative: Given any a, b, c ∈ R, (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c).

(d) Distributive: Given any a, b, c ∈ R, a · (b+ c) = a · b+ a · c.

(e) Identity: There exists 0, 1 ∈ R such that a+ 0 = a and a · 1 = a for all a ∈ R.

(f) Additive Inverse: For every a ∈ R, there exists −a ∈ R such that a+ (−a) = 0.

(g) Multiplicative Inverse: For every a ∈ R \ {0}, there exists a 1/a ∈ R such that a · (1/a) = 1.

Therefore, the real numbers are a field.

3 Ordering

We can use the ordering of the rational numbers to define an ordering of the real numbers. Let x, y ∈ S
denote rational Cauchy sequences. Then, we write x < y if there exists a rational ϵ > 0 and a rational N
such that

n > N ⇒ xn < yn − ϵ.
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Also, we write x = y if for all rational ϵ > 0 there is a rational N such that

n > N ⇒ |xn − yn| < ϵ.

Finally, we write x > y if there exists a rational ϵ > 0 and a rational N such that

n > N ⇒ xn > yn + ϵ.

This ordering of rational Cauchy sequences implies an ordering of real numbers. Therefore, the real numbers
form an ordered field.

4 Metric

We can define a metric on the set of real numbers just as we did with the set of rational numbers. First, we
define the absolute value of x ∈ R by

|x| =

{
x if x ≥ 0,

−x if x < 0.

Then, we define the distance between x, y ∈ R by d(x, y) = |x− y|. As with the rational numbers, this dis-
tance function satisfies the non-negativity, identity, symmetry, and triangle inequality properties. Therefore,
the real numbers are a metric space.
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