Proof Techniques

Thomas R. Cameron

August 25, 2025

1 Logical Statements

The language of mathematics consists primarily of declarative sentences. If a sentence can be classified as true or false, it is called a *statement*. Let p and q denote statements. There are several connectives to combine the statements p and q to form new statements. The *negation* of p, denoted $\neg p$, represents the logical opposite of p. The *conjunction* of p and q, denoted $p \wedge q$, represents the statement p and q. The disjunction of p and q, denoted $p \vee q$, represents the statement p or q. A statement of the form if p then q is called an *implication* or *conditional* statement. It asserts that if the *hypothesis* p is true, then the *conclusion* q must also be true. We denote the implication by $p \Rightarrow q$. We summarize the truth values of these connective statements in Table 1.

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$
Т	Τ	F	T	Т	Τ
\mathbf{T}	F	F	F	T	F
\mathbf{F}	Τ	Τ	F	Т	${ m T}$
\mathbf{F}	F	Т	F	F	${ m T}$

Table 1: Truth table for logical connectives

When a statement involves a variable, we use quantifiers to clarify the domain of the variable. In particular, the *existential quantifier* \exists indicates that there is at least one value for the variable such that the statement holds. The *universal quantifier* \forall indicates that the statement holds for all values of the variable within the given domain. For example,

$$\exists x \in \mathbb{R} \ni x^2 - 5x + 6 = 0$$

is read "there exists a real x such that $x^2 - 5x + 6 = 0$." This statement is true since the values x = 2 and x = 3 satisfy. In contrast, the statement

$$\forall x \in \mathbb{R}, \ x^2 - 5x + 6 = 0$$

is read "for all real x, $x^2 - 5x + 6 = 0$." This statement is false since it does not hold for the value x = 1, such an example is called a *counter example*.

Quantified statements can be confusing when there are two or more quantifiers in the same statement. For example, consider the statement "for every $\epsilon > 0$, there exists a $\delta > 0$ such that $1 - \delta < x < 1 + \delta$ implies that $5 - \epsilon < 2x + 3 < 5 + \epsilon$." This statement can be written as

$$\forall \epsilon > 0, \ \exists \delta > 0 \ \ni \ (1 - \delta < x < 1 + \delta) \Rightarrow (5 - \epsilon < 2x + 3 < 5 + \epsilon).$$

Note that the order of the quantifiers matters; in particular, this statement claims that for every $\epsilon > 0$ we can find a $\delta > 0$ such that an implication statement holds.

2 Proof Techniques

When proving an implication statement, $p \Rightarrow q$, there are several techniques we may use. A direct proof starts by assuming the hypothesis p is true and uses logical reasoning to deduce q. We can also prove the implication by proving logically equivalent statements directly. For example, the contrapositive, denoted $\neg q \Rightarrow \neg p$, is logically equivalent to $p \Rightarrow q$. Similarly, if c denotes a statement that is always false, then the contradiction, denoted $(p \land \neg q) \Rightarrow c$, is logically equivalent to $p \Rightarrow q$. We summarize the truth values of these statements in Table 2.

p	q	c	$p \Rightarrow q$	$\neg q \Rightarrow \neg p$	$p \land \neg q$	$(p \land \neg q) \Rightarrow c$
T	Т	F	T	T	F	T
${ m T}$	F	F	F	F	${ m T}$	F
\mathbf{F}	Т	F	Τ	$^{\rm T}$	F	T
\mathbf{F}	F	F	T	T	F	m T

Table 2: Truth table for statements logically equivalent to the implication statement.

In the following propositions, we illustrate these proof techniques. We begin with a direct proof.

Proposition 2.1. For every $\epsilon > 0$, there exists a $\delta > 0$ such that $1 - \delta < x < 1 + \delta$ implies that $5 - \epsilon < 2x + 3 < 5 + \epsilon$.

Proof. Let $\epsilon > 0$ and let $\delta = \epsilon/2$. Then, $\delta > 0$ and the following implications hold

$$\begin{split} 1-\delta < x < 1+\delta &\Rightarrow 2-2\delta < 2x < 2+2\delta \\ &\Rightarrow 5-2\delta < 2x+3 < 5+2\delta \\ &\Rightarrow 5-\epsilon < 2x+3 < 5+\epsilon. \end{split}$$

Next, we use a proof by contrapositive.

Proposition 2.2. Let f(x) be a continuous function on [0,1]. If $\int_0^1 f(x)dx \neq 0$, then there exists an x in [0,1] such that $f(x) \neq 0$.

Proof. We proceed via a proof by contrapositive. Suppose that for all x in [0,1], f(x)=0. Then, the region bounded by the curves y=f(x), y=0, x=0, and x=1 has zero area. Therefore, $\int_0^1 f(x)dx=0$.

Finally, we use a proof by contradiction.

Proposition 2.3. Let x be a real number. If x > 0, then 1/x > 0.

Proof. We proceed via a proof by contradiction. Suppose that x>0 and $1/x\leq 0$. Then,

$$x\frac{1}{x} \le x(0),$$

which implies the contradiction $1 \leq 0$.