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1 Logical Statements

The language of mathematics consists primarily of declarative sentences. If a sentence can be classified as
true or false, it is called a statement. Let p and ¢ denote statements. There are several connectives to
combine the statements p and ¢ to form new statements. The negation of p, denoted —p, represents the
logical opposite of p. The conjunction of p and ¢, denoted p A ¢, represents the statement p and q. The
disjunction of p and ¢, denoted pV ¢, represents the statement p or q. A statement of the form if p then ¢ is
called an implication or conditional statement. It asserts that if the hypothesis p is true, then the conclusion
g must also be true. We denote the implication by p = ¢q. We summarize the truth values of these connective
statements in Table Il
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Table 1: Truth table for logical connectives

When a statement involves a variable, we use quantifiers to clarify the domain of the variable. In
particular, the ezistential quantifier 3 indicates that there is at least one value for the variable such that the
statement holds. The universal quantifier ¥V indicates that the statement holds for all values of the variable
within the given domain. For example,

GeR 3 22-52+6=0

is read “there exists a real x such that 22 — 52z + 6 = 0.” This statement is true since the values = 2 and
x = 3 satisfy. In contrast, the statement

VeeR, 22 —5x+6=0

is read “for all real x, 2 — 52 + 6 = 0.” This statement is false since it does not hold for the value z = 1,
such an example is called a counter example.

Quantified statements can be confusing when there are two or more quantifiers in the same statement.
For example, consider the statement “for every ¢ > 0, there exists a 4 > 0 such that 1 -9 < x < 1+ implies
that 5 — e < 2z + 3 < 5+ ¢.” This statement can be written as

Ve>0,30>0 3> (1-d<z<1l+d)=>0b—-€e<2x+3<5+¢).

Note that the order of the quantifiers matters; in particular, this statement claims that for every € > 0 we
can find a § > 0 such that an implication statement holds.



2 Proof Techniques

When proving an implication statement, p = ¢, there are several techniques we may use. A direct proof
starts by assuming the hypothesis p is true and uses logical reasoning to deduce q. We can also prove the
implication by proving logically equivalent statements directly. For example, the contrapositive, denoted
—q = —p, is logically equivalent to p = ¢. Similarly, if ¢ denotes a statement that is always false, then the
contradiction, denoted (p A —q) = ¢, is logically equivalent to p = ¢q. We summarize the truth values of
these statements in Table 2

plalclp=q|-qg=-p|pr-q| (pAr-qg) =c
T|[T|F| T T F T
T|F|F| F F T F
F|T|F| T T F T
F|F|F| T T F T

Table 2: Truth table for statements logically equivalent to the implication statement.

In the following propositions, we illustrate these proof techniques. We begin with a direct proof.

Proposition 2.1. For every € > 0, there exists a 6 > 0 such that 1 —§ < x < 149 implies that 5 — e <
2r+3<b+e

Proof. Let € > 0 and let 6 = ¢/2. Then, § > 0 and the following implications hold

1-9<2<14+0=2-20<2x<2+20
=5-20<2r+3<5+20
=5—e<2r+3<5+e

Next, we use a proof by contrapositive.

Proposition 2.2. Let f(z) be a continuous function on [0,1]. If fol f(z)dx # 0, then there exists an x in
[0,1] such that f(z) # 0.

Proof. We proceed via a proof by contrapositive. Suppose that for all z in [0,1], f(z) = 0. Then, the region
bounded by the curves y = f(z), y =0, z = 0, and = = 1 has zero area. Therefore, fol f(x)dx = 0. O

Finally, we use a proof by contradiction.
Proposition 2.3. Let x be a real number. If x > 0, then 1/x > 0.
Proof. We proceed via a proof by contradiction. Suppose that x > 0 and 1/z < 0. Then,

:v1 < z(0),
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which implies the contradiction 1 < 0. O
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