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1 Limits of Functions

Let f: S — R and let ¢ € S’. We say that the function f has a limit at c if there exists a L € R where for all
€ € Ry there is a § € Ry such that |f(z) — L| < € whenever 0 < |z —¢| < § and x € S. In this definition
of the limit, it is important that ¢ is an accumulation point of S since it guarantees that N*(c;6) NS # 0
for all § > 0. Also, since 0 < |z — ¢| < §, the limit definition does not consider the value of f at ¢; in fact, f
need not be defined at c.
If f has a limit at ¢, we call L € R the limiting value of f at ¢. In this case, we write

lim f(x) = L.
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We may also say that f converges to L as x approaches c. The following result shows that we can characterize
the limit using the language of neighborhoods.

Theorem 1.1. Let f: S — R and let c € S'. Then, lim,_,. f(z) = L if and only if for each neighborhood V
of L there exists a deleted neighborhood U of ¢ such that f(UNS) C V.

The following result shows that the limiting value of a function is unique.
Proposition 1.2. Let f: S — R and let c € S’. If f has a limit at c, then the limiting value is unique.
Proof. Suppose that f has a limit at c¢. Also, suppose that L1, Lo € R are limiting values of f at c.
Now, let € € R-g. Then, there exists d1,d2 € Rs ¢ such that
2 €SAN0< |z —c| <& = |f(z)— L] <§

and .
IES/\O<|x—c|<52¢|f(z)fL2|<§.

Let § = min{d1,d2}. Then, z € SA0 < |z — ¢| < ¢ implies that

|L1 — La| = [L1 — f(z) + f(x) — Lo
<Ly = f(@)] + [f(z) — Lo
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Since the above inequality holds for any € € Ry, it follows that L; = Ls. O

For example, consider the function f: R — R defined by f(z) = 2z + 1 for all x € R. We claim that
lim,_,3 f(z) = 7. To this end, let € € R and define § = ¢/2. Then, x € RA0 < |z — 3| < ¢ implies that

|22 4+ 1) — 7| = |22 — 6]
= 2|z — 3]
<2)=¢e.



As another example, consider the function f: R — R defined by f(x) = 22 + 22 + 6 for all x € R. We claim
that lim, 3 f(«) = 21. To this end, let € € Ry and define 6 = min{1,¢/9}. Then, x e RAO< |[x — 3| < ¢
implies that

|(2® + 22+ 6) — 21| = |2 + 22 — 15|
= |(z +5)(z - 3)]
= |+ 5] [z - 3]
<96 =e.

2 Sequential Limits

The following theorem establishes an important relationship between limits of functions and limits of se-
quences.

Theorem 2.1. Let f: S — R and let c € S’. Also, let L € R. Then, lim,_,. f(xz) = L if and only if for
every sequence s: N — R such that rng (s) C S\ {c} and lim, o S, = ¢, we have

lim f(s,) = L.

n—oo

Proof. Suppose that lim,_,. f(x) = L. Let s: N — R be a sequence such that rmg(s) € S\ {c¢} and
lim,, o 85, = ¢. Let € € Ryg. Since lim, . f(x) = L, there is a 6 € R<g such that

reESNO<|z—cl<d=|f(x)—L|<e
Since lim,,_, o S, = ¢, there is a N € N such that

n>N=|s,—c<d
= |f(sp) — L] <e.

Therefore, lim,, o f(sn) = L.

Conversely, suppose that lim, oo f(z) # L. Then, there exists an € € Rs( such that for all 6 € Ry
there is an € S\ {c} such that 0 < |x —¢| < § and |f(z) — L| > e. Therefore, for each n € N there is a
sn € S\ {c} such that 0 < |s,, — ¢| < 1/n and |f(s,) — L| > e. Hence, we have defined a sequence s such
that rng (s) € S\ {c} and lim,,_, s, = ¢ but lim,,_,o, f(s,) # L. O

Using Theorem [2.I] we can apply everything we know about limits of sequences to limits of functions.
For example, we have the following corollary.

Corollary 2.2. Let f: S — R and g: S — R. Also, let ¢ € S'. Suppose that lim,_,. f(z) = L and
lim,_, g(z) = L'. Then,

(a) limge (f(z) +9(x)) = L+ L',

(b) lim, . (k- f(z)) =k- L, for all k € R,
(c) limg e (f(2) - g(x)) = L- L,

(d) tim, . 28 = L provided that I # 0.
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