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1 Limits of Functions

Let f : S → R and let c ∈ S′. We say that the function f has a limit at c if there exists a L ∈ R where for all
ϵ ∈ R>0 there is a δ ∈ R>0 such that |f(x)− L| < ϵ whenever 0 < |x− c| < δ and x ∈ S. In this definition
of the limit, it is important that c is an accumulation point of S since it guarantees that N∗(c; δ) ∩ S ̸= ∅
for all δ > 0. Also, since 0 < |x− c| < δ, the limit definition does not consider the value of f at c; in fact, f
need not be defined at c.

If f has a limit at c, we call L ∈ R the limiting value of f at c. In this case, we write

lim
x→c

f(x) = L.

We may also say that f converges to L as x approaches c. The following result shows that we can characterize
the limit using the language of neighborhoods.

Theorem 1.1. Let f : S → R and let c ∈ S′. Then, limx→c f(x) = L if and only if for each neighborhood V
of L there exists a deleted neighborhood U of c such that f(U ∩ S) ⊆ V .

The following result shows that the limiting value of a function is unique.

Proposition 1.2. Let f : S → R and let c ∈ S′. If f has a limit at c, then the limiting value is unique.

Proof. Suppose that f has a limit at c. Also, suppose that L1, L2 ∈ R are limiting values of f at c.
Now, let ϵ ∈ R>0. Then, there exists δ1, δ2 ∈ R>0 such that

x ∈ S ∧ 0 < |x− c| < δ1 ⇒ |f(x)− L1| <
ϵ

2

and
x ∈ S ∧ 0 < |x− c| < δ2 ⇒ |f(x)− L2| <

ϵ

2
.

Let δ = min{δ1, δ2}. Then, x ∈ S ∧ 0 < |x− c| < δ implies that

|L1 − L2| = |L1 − f(x) + f(x)− L2|
≤ |L1 − f(x)|+ |f(x)− L2|

<
ϵ

2
+

ϵ

2
= ϵ.

Since the above inequality holds for any ϵ ∈ R>0, it follows that L1 = L2.

For example, consider the function f : R → R defined by f(x) = 2x + 1 for all x ∈ R. We claim that
limx→3 f(x) = 7. To this end, let ϵ ∈ R>0 and define δ = ϵ/2. Then, x ∈ R ∧ 0 < |x− 3| < δ implies that

|(2x+ 1)− 7| = |2x− 6|
= 2 |x− 3|
< 2δ = ϵ.
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As another example, consider the function f : R → R defined by f(x) = x2 + 2x+ 6 for all x ∈ R. We claim
that limx→3 f(x) = 21. To this end, let ϵ ∈ R>0 and define δ = min{1, ϵ/9}. Then, x ∈ R ∧ 0 < |x− 3| < δ
implies that ∣∣(x2 + 2x+ 6)− 21

∣∣ = ∣∣x2 + 2x− 15
∣∣

= |(x+ 5)(x− 3)|
= |x+ 5| |x− 3|
< 9δ = ϵ.

2 Sequential Limits

The following theorem establishes an important relationship between limits of functions and limits of se-
quences.

Theorem 2.1. Let f : S → R and let c ∈ S′. Also, let L ∈ R. Then, limx→c f(x) = L if and only if for
every sequence s : N → R such that rng (s) ⊆ S \ {c} and limn→∞ sn = c, we have

lim
n→∞

f(sn) = L.

Proof. Suppose that limx→c f(x) = L. Let s : N → R be a sequence such that rng (s) ⊆ S \ {c} and
limn→∞ sn = c. Let ϵ ∈ R>0. Since limx→c f(x) = L, there is a δ ∈ R>0 such that

x ∈ S ∧ 0 < |x− c| < δ ⇒ |f(x)− L| < ϵ.

Since limn→∞ sn = c, there is a N ∈ N such that

n ≥ N ⇒ |sn − c| < δ

⇒ |f(sn)− L| < ϵ.

Therefore, limn→∞ f(sn) = L.
Conversely, suppose that limx→∞c f(x) ̸= L. Then, there exists an ϵ ∈ R>0 such that for all δ ∈ R>0

there is an x ∈ S \ {c} such that 0 < |x− c| < δ and |f(x)− L| ≥ ϵ. Therefore, for each n ∈ N there is a
sn ∈ S \ {c} such that 0 < |sn − c| < 1/n and |f(sn)− L| ≥ ϵ. Hence, we have defined a sequence s such
that rng (s) ⊆ S \ {c} and limn→∞ sn = c but limn→∞ f(sn) ̸= L.

Using Theorem 2.1 we can apply everything we know about limits of sequences to limits of functions.
For example, we have the following corollary.

Corollary 2.2. Let f : S → R and g : S → R. Also, let c ∈ S′. Suppose that limx→c f(x) = L and
limx→ g(x) = L′. Then,

(a) limx→c (f(x) + g(x)) = L+ L′,

(b) limx→c (k · f(x)) = k · L, for all k ∈ R,

(c) limx→c (f(x) · g(x)) = L · L′,

(d) limx→c
f(x)
g(x) = L

L′ , provided that L′ ̸= 0.
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