Homework 4

Real Analysis

Due October 24, 2025

Exercises

1. Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Use the $\epsilon - \delta$ definition to prove that $\lim_{x \to c} f(x)$ exists if and only if c = 0.

2. Define the modified Dirichlet function $f:(0,1)\to\mathbb{R}$ by

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = m/n \text{ is a fully reduced rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is continuous at each irrational in (0,1) and discontinuous at each rational.

- 3. Prove or give a counterexample: Every sequence of real numbers is a continuous function.
- 4. Suppose that $f:[a,b]\to\mathbb{R}$ is continuous and $f([a,b])\subseteq\mathbb{Q}$. Prove that f is constant.
- 5. Prove or give a counterexample: If $f: A \to B$ is uniformly continuous on A and $g: B \to C$ is uniformly continuous on B, then $g \circ f: A \to C$ is uniformly continuous on A.
- 6. Let $S \subseteq \mathbb{R}$ and let $f: S \to \mathbb{R}$ be uniformly continuous on S. Prove that f(S) is bounded.