Homework 3

Real Analysis

Due October 10, 2025

Exercises

- 1. Classify each of the following sets as open, closed, neither, or both.
 - (a) A = (2,5)
 - (b) B = [2, 5]
 - (c) C = [2, 5)
 - (d) $D = \mathbb{R}$
 - (e) $E = \mathbb{Z}$
 - (f) $F = \mathbb{Q}$
- 2. Use the open cover definition of compactness to prove that all finite sets are compact.
- 3. Let $S \subseteq \mathbb{R}$. Prove that if $x \in \mathbb{R}$ is an accumulation point of S, then every neighborhood of x contains infinitely many points of S.
- 4. Let $S \subseteq \mathbb{R}$ be bounded. Prove that if S contains infinitely many points, then there exists at least one point in \mathbb{R} that is an accumulation point of S.
- 5. Let $S \subseteq \mathbb{R}$. Prove that $x \in S'$ if and only if there exists a sequence $s : \mathbb{N} \to \mathbb{R}$ such that $\operatorname{rng}(s) \subseteq S \setminus \{x\}$ and $\lim_{n \to \infty} s_n = x$.