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Exercises

III. Let f : A → B and suppose there exists a g : B → A such that g ◦ f = iA and f ◦ g = iB .

(a) f is injective.

Proof. Suppose that (a, b), (a′, b) ∈ f Since f is a function, it follows that the b related to a and
a′ by f must be unique. Furthermore, since (a, a), (a′, a′) ∈ iA and

iA = g ◦ f = {(a, a) : ∃b ∈ B ∋ (a, b) ∈ f ∧ (b, a) ∈ g} ,

it follows that (b, a), (b, a′) ∈ g. Since g is a function, a = a′. Therefore, f is injective.

(b) f is surjective.

Proof. Let b ∈ B. Then, (b, b) ∈ iB . Since

iB = f ◦ g = {(b, b) : ∃a ∈ A ∋ (b, a) ∈ g ∧ (a, b) ∈ f} ,

it follows that there exists an a ∈ A such that (a, b) ∈ f . Therefore, f is surjective.

(c) g = f−1.

Proof. Since f : A → B is bijective, it follows that f−1 : B → A is also a bijective function.
Therefore, f−1 and g are functions with the same domain, that is, dom (g) = dom

(
f−1

)
= B.

Now, let b ∈ B. Then, (b, b) ∈ iB . Furthermore, since iB = f ◦ g and iB = f ◦ f−1, it follows that
there exists an a ∈ A such that (b, a) ∈ g and (b, a) ∈ f−1.

IV. Let r ̸= 1. Then, for each n ∈ N,
n∑

i=0

ri =
1− rn+1

1− r
.

Proof. We proceed via mathematical induction. For the base case, n = 1, note that

1 + r =
1− r2

1− r
.

Let k ∈ N and suppose that
k∑

i=0

ri =
1− rk+1

1− r
.
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Then,

k+1∑
i=0

ri =

k∑
i=0

ri + rk+1

=
1− rk+1

1− r
+ rk+1

=
1− rk+1

1− r
+ rk+1 · 1− r

1− r

=
1− rk+2

1− r
.

Therefore,
∑n

i=0 r
i = 1−rn+1

1−r for all n ∈ N.

VI. Let x : N → Q and y : N → Q denote rational Cauchy sequences. Then, x + y = (xn + yn)
∞
n=1 and

x · y = (xn · yn)∞n=1 are rational Cauchy sequences.

Proof. The fact that x+ y and x · y are rational follows from the closure of Q. Hence, we only need to
show that these sequences are Cauchy. To this end, let ϵ > 0. Then, since x and y are Cauchy, there
exists N1, N2 ∈ N such that for all n,m ≥ N1,

|xn − xm| < ϵ

2

and for all n,m ≥ N2,

|yn − ym| < ϵ

2
.

Therefore, for n,m ≥ max{N1, N2},

|(xn + yn)− (xm + ym)| = |(xn − xm) + (yn − ym)|
≤ |xn − xm|+ |yn − ym|

<
ϵ

2
+

ϵ

2
= ϵ.

Since x and y are Cauchy, they are both bounded sequences. That is, there exists Mx,My ∈ Q>0 such
that |xn| ≤ Mx and |yn| ≤ My, for all n ∈ N. Furthermore, there exists N1, N2 ∈ N such that for all
n,m ≥ N1,

|xn − xm| < ϵ

2My

and for all n,m ≥ N2,

|yn − ym| < ϵ

2Mx
.

Therefore, for n,m ≥ max{N1, N2},

|xn · yn − xm · ym| = |xn · yn − xm · yn + xm · yn − xm · ym|
= |(xn − xm)yn + xm(yn − ym)|
≤ |yn| |xn − xm|+ |xm| |yn − ym|
≤ My |xn − xm|+Mx |yn − yn|

< My
ϵ

2My
+Mx

ϵ

2Mx
= ϵ.

VII. Let C denote the set of all rational Cauchy sequences. Define the relation R on C by

((xn)
∞
n=1, (yn)

∞
n=1) ∈ R ⇔ ∀ϵ ∈ Q>0, ∃N ∈ N ∋ n ≥ N ⇒ |xn − yn| < ϵ.

Then R is an equivalence relation on C.
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Proof. Let (xn)
∞
n=1 ∈ C. Then, for any ϵ ∈ Q>0, it follows that |xn − xn| = 0 < ϵ for all n ∈ N. Hence,

the relation R is reflexive. Suppose that ((xn)
∞
n=1, (yn)

∞
n=1) ∈ R. Then, for all ϵ ∈ Q>0 there exists a

N ∈ N such that |xn − yn| < ϵ. Therefore,

|yn − xn| = |xn − yn| < ϵ,

thus, ((yn)
∞
n=1, (xn)

∞
n=1) ∈ R. Hence, the relationR is symmetric. Suppose that ((xn)

∞
n=1, (yn)

∞
n=1) ∈ R

and ((yn)
∞
n=1, (zn)

∞
n=1) ∈ R. Then, for all ϵ ∈ Q>0 there exists a N1, N2 ∈ N such that |xn − yn| < ϵ/2

and |yn − zn| < ϵ/2 for all n ≥ max{N1, N2}. Therefore,

|xn − zn| = |xn − yn + yn − zn|
≤ |xn − yn|+ |yn − zn|

<
ϵ

2
+

ϵ

2
= ϵ.

Hence, the relation R is transitive.

X. The natural numbers are unbounded above in R.

Proof. Suppose that N ⊆ R is bounded above. By the completeness of the real numbers, the least
upper bound of N is a real number, that is, L = supN ∈ R. Since L − 1 is not an upper bound of N,
there exists a n ∈ N such that n > L − 1. However, n + 1 ∈ N and n + 1 > L, which contradicts L
being an upperbound on N.
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