Exam I Worksheet

Thomas R. Cameron

September 17, 2025

Exercises

- I. Let p and q be logical statements and let c be a statement that is always false. Use a truth table to show that $p \Rightarrow q$ is logically equivalent to $(p \land \neg q) \Rightarrow c$.
- II. Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$ and define the functions

$$f = \{(1, a), (2, b), (3, a)\}$$
 and $g = \{(a, 1), (b, 3), (c, 2)\}$.

Describe each of the following functions by listing its ordered pairs. State the domain and range of each function and whether they are injective or surjective.

- (a) g^{-1}
- (b) $f \circ g$
- (c) $g \circ f$
- III. Let $f: A \to B$ and suppose there exists a $g: B \to A$ such that $g \circ f = i_A$ and $f \circ g = i_B$.
 - (a) Prove that f is injective.
 - (b) Prove that f is surjective.
 - (c) Prove that $g = f^{-1}$.
- IV. Let $r \neq 1$ be a real number. Use the principal of mathematical induction to prove that

$$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{n+1}}{1 - r},$$

for all $n \in \mathbb{N}$.

- V. Let $s: \mathbb{N} \to \mathbb{Q}$ denote a rational Cauchy sequence. Prove that there exists a rational $M \in \mathbb{Q}$ such that $|s_n| \leq M$ for all $n \in \mathbb{N}$.
- VI. Let $x: \mathbb{N} \to \mathbb{Q}$ and $y: \mathbb{N} \to \mathbb{Q}$ denote rational Cauchy sequences. Prove that $x + y = (x_n + y_n)_{n=1}^{\infty}$ and $x \cdot y = (x_n \cdot y_n)_{n=1}^{\infty}$ are rational Cauchy sequences.
- VII. Let $\mathcal C$ denote the set of all rational Cauchy sequences. Define the relation R on $\mathcal C$ by

$$((x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}) \in R \iff \forall \epsilon \in \mathbb{Q}_{>0}, \ \exists N \in \mathbb{N} \ \ni \ n \ge N \Rightarrow |x_n - y_n| < \epsilon.$$

Show that R is an equivalence relation.

- VIII. State what it means for the real numbers \mathbb{R} to be a complete ordered field.
 - IX. For each of the following subsets of \mathbb{R} , give its infimum and supremum if they exist.
 - (a) $\{1,3\}$
 - (b) $(-\infty, 4)$
 - (c) $\left\{\frac{n}{n+1} : n \in \mathbb{N}\right\}$
 - X. Use the completeness of \mathbb{R} to prove that the set of natural numbers \mathbb{N} are unbounded above in \mathbb{R} .

1