Continuous Functions

Thomas R. Cameron

October 10, 2025

1 Continuous Functions

Let $f: S \to \mathbb{R}$. We've seen that the limit of a function f at a point $c \in S'$ is independent of the nature of the function at c. It may be that f is not defined at c, and even if f(c) exists it may differ from the value of the limit. When it happens that the limit of f at c is equal to f(c), the function is said to be continuous at c. More formally, we say that f is *continuous* at $c \in S$ if for all $e \in \mathbb{R}_{>0}$ there is a $e \in \mathbb{R}_{>0}$ such that |f(x) - f(c)| < e whenever $|x - c| < \delta$ and $e \in S$.

Note that the definition of continuity does not require c to be an accumulation point of S. If c is an isolated point of S, then the definition of continuity follows immediately. If c is an accumulation point of S, then f is continuous at c if and only if f has a limit at c and $\lim_{x\to c} f(x) = f(c)$. The following result summarizes equivalent conditions for the continuity of f at c.

Theorem 1.1. Let $f: S \to \mathbb{R}$ and let $c \in S$. Then, the following three conditions are equivalent:

- (a) f is continuous at c.
- (b) If $x: \mathbb{N} \to S$ converges to c, then $\lim_{n \to \infty} f(x_n) = f(c)$.
- (c) For every neighborhood V of f(c) there is a neighborhood U of c such that $f(U \cap S) \subseteq V$.

Furthermore, if c is an accumulation point of S, then the above are all equivalent to

(d) f has a limit at c and $\lim_{x\to c} f(x) = f(c)$.

Proof. Let c be an isolated point of S. Then, there exists a $\delta \in \mathbb{R}_{>0}$ such that $N(c;\delta) \cap S = \{c\}$. Hence, $f(N(c;\delta) \cap S) = \{f(c)\} \subseteq V$ for any neighborhood V of f(c), that is, (c) holds. If $x \in S$ and $|x-c| < \delta$, then x = c; so, $|f(x) - f(c)| = 0 < \epsilon$ for all $\epsilon \in \mathbb{R}_{>0}$. Hence, f is continuous at c, that is, (a) holds. If $x : \mathbb{N} \to S$ converges to c, then there is a $N \in \mathbb{N}$ such that $|x_n - c| < \delta$ for all $n \geq N$; so, $x_n = c$ for all $n \geq N$. Hence, $f(x_n) = f(c)$ for all $n \geq N$, so $\lim_{n \to \infty} f(x_n) = f(c)$, that is, (b) holds. It follows that if c is an isolated point of S, then (a), (b), and (c) all hold true.

Let c be an accumulation point of S. Suppose that (a) holds and $x : \mathbb{N} \to S$ converges to c. Since f is continuous at c, for any $\epsilon \in \mathbb{R}_{>0}$, there is a $\delta \in \mathbb{R}_{>0}$ such that $|f(x) - f(c)| < \epsilon$ whenever $x \in N(c; \delta) \cap S$. Since $x : \mathbb{N} \to S$ converges to c, there is a $N \in \mathbb{N}$ such that $|x_n - c| < \delta$ whenever $n \ge N$. Therefore,

$$n \ge N \Rightarrow |x_n - c| < \delta$$

 $\Rightarrow |f(x_n) - f(c)| < \epsilon.$

Hence, $\lim_{n\to\infty} f(x_n) = f(c)$, and it follows that (a) implies (b).

To show that (b) implies (c), we establish the converse. To that end, suppose there exists an $\epsilon \in \mathbb{R}_{>0}$ such that for all $\delta \in \mathbb{R}_{>0}$ there exists $x \in N(c;\delta) \cap S$ such that $f(x) \notin N(f(c);\epsilon)$. Then, for each $n \in \mathbb{N}$, there exists an $x_n \in N(c;1/n) \cap S$ such that $f(x_n) \notin N(f(c);\epsilon)$. Therefore, $x \colon \mathbb{N} \to S$ converges to c but $\lim_{n\to\infty} f(x_n) \neq f(c)$.

Suppose that (c) holds. Let $\epsilon \in \mathbb{R}_{>0}$. Then, there exists a $\delta \in \mathbb{R}_{>0}$ such that $f(x) \in N(f(c); \epsilon)$ whenever $x \in N(c; \delta) \cap S$. Since c is an accumulation point of S, there are points in $N(c; \delta) \cap S$ other than c itself. Therefore, f has a limit at c and $\lim_{x\to c} f(x) = f(c)$. So, (c) implies (d).

Suppose (d) holds. Let $\epsilon \in \mathbb{R}_{>0}$. Then, there exists a $\delta \in \mathbb{R}_{>0}$ such that $f(x) \in N(f(c); \epsilon)$ whenever $x \in N^*(c; \delta)$. Clearly $f(c) \in N(f(c); \epsilon)$. Therefore, $f(x) \in N(f(c); \epsilon)$ whenever $x \in N(c; \delta)$; thus, f is continuous at c. So, (d) implies (a).

Theorem 1.1 can be useful to show a function is discontinuous. For example, consider the Dirichlet function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Let $c \in \mathbb{R}$ and $\epsilon = 1/2$. Then, for all $\delta \in \mathbb{R}_{>0}$, the neighborhood $N(c; \delta)$ contains both rational and irrational numbers. Therefore, $f(N(c; \delta))$ is not a subset of $N(f(c); \epsilon)$ for any $\delta \in \mathbb{R}_{>0}$. So, Theorem 1.1 (c) implies that f is not coninuous at c.

Therefore 1.1 also implies that the properties of limits can be used to identify properties of continuous functions. The following corollary summarizes these properties.

Corollary 1.2. Let $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ be continuous at c. Then,

- (a) f + g is continuous at c.
- (b) $k \cdot f$ is continuous at c, for all $k \in \mathbb{R}$.
- (c) $f \cdot g$ is continuous at c.
- (d) f/g is continuous at c, provided that $g(c) \neq 0$.

In addition to Corollary 1.2, the following theorem shows that the composition of continuous functions is continuous.

Theorem 1.3. Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ such that $f(A) \subseteq B$. Suppose that f is continuous at $c \in A$ and g is continuous at $f(c) \in B$. Then, $g \circ f$ is continuous at c.

Proof. Let W be any neighborhood of g(f(c)). Since g is continuous at f(c), there exists a neighborhood V of f(c) such that $g(V \cap B) \subseteq W$. Since f is continuous at c, there is a neighborhood U of c such that $f(U \cap A) \subseteq V$. Since $f(A) \subseteq B$, it follows that $f(U \cap A) \subseteq V \cap B$. Therefore,

$$g(f(U \cap A)) \subseteq g(V \cap B) \subseteq W$$
.

Hence, Theorem 1.1 (c) implies that $g \circ f$ is continuous at c.

2 Compactness and Continuous Functions

In this section, we show that for continuous functions the image of a compact set is another compact set. Note that $f: S \to \mathbb{R}$ is continuous on S if f(c) is continuous for all $c \in S$. We begin with the following lemma that establishes that the image is bounded.

Lemma 2.1. Let $S \subseteq \mathbb{R}$ and $f \colon S \to \mathbb{R}$ be continuous on S. If S is compact, then f(S) is bounded.

Proof. For the sake of contradiction, suppose that S is compact and f(S) is unbounded. Then, for each $n \in \mathbb{N}$, there is a $s_n \in S$ such that $|f(s_n)| \geq n$. The sequence $s \colon \mathbb{N} \to S$ is bounded since S is compact. Therefore, the Bolzano-Weierstrass theorem implies that $\operatorname{rng}(s)$ has an accumulation point, which we denote by $L \in R$. Since $\operatorname{rng}(s) \subseteq S$, it follows that L is an accumulation point of S; hence, since S is compact, $L \in S$. Furthermore, since L is an accumulation point of $\operatorname{rng}(s)$, there exists a subsequence $S \circ \sigma$ that converges to S. However, since S is contradicted that S is continuity of S at S is the continuity of S at S is contradicted that S is contradicted to S is contradic

Next, we show that the image is compact.

Theorem 2.2. Let $S \subseteq \mathbb{R}$ and $f: S \to \mathbb{R}$ be continuous on S. If S is compact, then f(S) is compact.

Proof. By Lemma 2.1, f(S) is bounded. Thus, by the Heine-Borel theorem, we only need to show that f(S) is closed. If f(S) has no accumulation points, then we are done. Suppose that $b \in \mathbb{R}$ is an accumulation point of f(S). Then, for each $n \in \mathbb{N}$, there is a $y_n \in N^*(b; 1/n) \cap f(S)$ and $x_n \in S$ such that $f(x_n) = y_n$. Note that the y_n can be selected to be distinct since there are infinitely many points in $N^*(b; 1/n) \cap f(S)$, for all

 $n \in \mathbb{N}$. Therefore, rng (y) and rng (x) are infinite sets. Since rng $(x) \subseteq S$ is bounded, the Bolzano-Weierstrass theorem states that rng (x) has an accumulation point, which we denote by $a \in R$. Since rng $(x) \subseteq S$, it follows that a is an accumulation point of S; hence, since S is compact, $a \in S$. Furthermore, since S is an accumulation point of rng S0, there exists a subsequence S0 that converges to S1. Since S2 is continuous, Theorem 1.1 (b) implies that

$$f(a) = \lim_{k \to \infty} f(x_{\sigma_k}) = \lim_{k \to \infty} y_{\sigma_k} = b.$$

Since f(a) = b, it follows that $b \in f(S)$. Therefore, f(S) is closed.

As a corollary of Theorem 2.2, we show that the image contains its maximum and minimum value.

Corollary 2.3. Let $S \subseteq \mathbb{R}$ and $f \colon S \to \mathbb{R}$ be continuous on S. If S is compact, then f(S) contains its maximum and minimum value.

Proof. Suppose that S is compact. Then, Theorem 2.2 states that f(S) is compact. Therefore, $f(S) \subseteq \mathbb{R}$ is bounded; so, the completeness axiom states that f(S) has an infimum and supremum. Let m denote the supremum of f(S) and for the sake of contradiction suppose that $m \notin f(S)$. Then, for all $\epsilon > 0$, there is a $y \in f(S)$ such that $m - \epsilon < y < m$. Therefore, m is an accumulation point of f(S). Furthermore, $m \notin f(S)$ contradicts f(S) being closed. A similar argument shows that f(S) contains its infimum. Thus, f(S) contains its maximum and minimum value.