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1 Continuous Functions

Let f: S — R. We've seen that the limit of a function f at a point ¢ € S’ is independent of the nature of
the function at ¢. It may be that f is not defined at ¢, and even if f(c) exists it may differ from the value
of the limit. When it happens that the limit of f at ¢ is equal to f(c), the function is said to be continuous
at ¢. More formally, we say that f is continuous at ¢ € S if for all € € Ry there is a 6 € Ry such that
|f(z) — f(c)] < e whenever |zt —¢| < d and z € S.

Note that the definition of continuity does not require ¢ to be an accumulation point of S. If ¢ is an
isolated point of S, then the definition of continuity follows immediately. If ¢ is an accumulation point of
S, then f is continuous at ¢ if and only if f has a limit at ¢ and lim,_,. f(x) = f(¢). The following result
summarizes equivalent conditions for the continuity of f at c.

Theorem 1.1. Let f: S — R and let ¢ € S. Then, the following three conditions are equivalent:
(a) f is continuous at c.

(b) If x: N — S converges to ¢, then lim,_,o f(x,) = f(c).

(¢) For every neighborhood V' of f(c) there is a neighborhood U of ¢ such that f(UNS) C V.
Furthermore, if ¢ is an accumulation point of S, then the above are all equivalent to

(d) f has a limit at ¢ and lim,_,. f(x) = f(c).

Proof. Let ¢ be an isolated point of S. Then, there exists a § € Ry such that N(c;0) NS = {c}. Hence,
F(N(¢;0)NS) = {f(c)} CV for any neighborhood V of f(c), that is, (c) holds. If z € S and |z —¢| < ¢,
then x = ¢; so, |f(x) — f(c)] = 0 < € for all € € Rs. Hence, f is continuous at ¢, that is, (a) holds. If
x: N — S converges to ¢, then there is a N € N such that |z, — ¢| < § for all n > N; so, x, = ¢ for all
n > N. Hence, f(z,) = f(c) for all n > N, so lim,_,« f(zn) = f(c), that is, (b) holds. It follows that if ¢
is an isolated point of S, then (a), (b), and (c) all hold true.

Let ¢ be an accumulation point of S. Suppose that (a) holds and z: N — S converges to ¢. Since f is
continuous at ¢, for any € € Rxo, there is a § € Ry such that |f(z) — f(c)| < € whenever z € N(¢;0) N S.
Since z: N — S converges to ¢, there is a N € N such that |z,, — ¢| < § whenever n > N. Therefore,

n>N=|z, —cl <o
= [f(zn) = flc)] <e

Hence, lim,, o f(z,) = f(c), and it follows that (a) implies (b).

To show that (b) implies (c), we establish the converse. To that end, suppose there exists an € € Rsq
such that for all § € Rs¢ there exists © € N(¢;d) NS such that f(z) ¢ N(f(c);€). Then, for each n € N,
there exists an x,, € N(¢;1/n) N S such that f(x,) ¢ N(f(c);€). Therefore, x: N — S converges to ¢ but
limy oo f(2n) £ f(c)-

Suppose that (c) holds. Let € € R~q. Then, there exists a 6 € R<g such that f(x) € N(f(c);€) whenever
x € N(c;0) N S. Since ¢ is an accumulation point of S, there are points in N(c;d) NS other than c itself.
Therefore, f has a limit at ¢ and lim,_,. f(z) = f(c). So, (c) implies (d).

Suppose (d) holds. Let € € Ryg. Then, there exists a 6 € Ry such that f(x) € N(f(c);e) whenever
x € N*(¢;d). Clearly f(c) € N(f(c);e). Therefore, f(x) € N(f(c);e) whenever x € N(c;d); thus, f is
continuous at ¢. So, (d) implies (a). O



Theorem can be useful to show a function is discontinuous. For example, consider the Dirichlet
function f: R — R defined by
1 ifzeQ
fz) = {

0 ifz¢Q

Let ¢ € R and € = 1/2. Then, for all § € R+, the neighborhood N(¢; §) contains both rational and irrational
numbers. Therefore, f(N(c¢;0)) is not a subset of N(f(c);e€) for any 6 € Rsg. So, Theorem (c) implies
that f is not coninuous at c.

Therefore also implies that the properties of limits can be used to identify properties of continuous
functions. The following corollary summarizes these properties.

Corollary 1.2. Let f: S — R and g: S — R be continuous at c. Then,
(a) [+ g is continuous at c.

(b) k- f is continuous at ¢, for all k € R.

(c) [ g is continuous at c.

(d) f/g is continuous at ¢, provided that g(c) # 0.

In addition to Corollary the following theorem shows that the composition of continuous functions
is continuous.

Theorem 1.3. Let f: A — R and g: B — R such that f(A) C B. Suppose that f is continuous at c € A
and g is continuous at f(c) € B. Then, go f is continuous at c.

Proof. Let W be any neighborhood of g(f(c)). Since g is continuous at f(c), there exists a neighborhood
V of f(c) such that g(V N B) C W. Since f is continuous at ¢, there is a neighborhood U of ¢ such that
f(UNA) CV. Since f(A) C B, it follows that f(U N A) C V N B. Therefore,

g(f(UNA) Cg(VNB)CW.

Hence, Theorem (c) implies that g o f is continuous at c. O

2 Compactness and Continuous Functions

In this section, we show that for continuous functions the image of a compact set is another compact set.
Note that f: S — R is continuous on S if f(c¢) is continuous for all ¢ € S. We begin with the following
lemma that establishes that the image is bounded.

Lemma 2.1. Let S CR and f: S — R be continuous on S. If S is compact, then f(S) is bounded.

Proof. For the sake of contradiction, suppose that S is compact and f(S) is unbounded. Then, for each
n € N, there is a s, € S such that |f(s,)] > n. The sequence s: N — S is bounded since S is compact.
Therefore, the Bolzano-Weierstrass theorem implies that rng (s) has an accumulation point, which we denote
by L € R. Since rng (s) C S, it follows that L is an accumulation point of S; hence, since S is compact, L € S.
Furthermore, since L is an accumulation point of rng (s), there exists a subsequence s o o that converges
to L. However, since f(sy,) > o > k, it follows that lim;_,o f(ss,) does not exist, which contradicts the
continuity of f at L by Theorem (b). O

Next, we show that the image is compact.
Theorem 2.2. Let S CR and f: S — R be continuous on S. If S is compact, then f(S) is compact.

Proof. By Lemma f(S) is bounded. Thus, by the Heine-Borel theorem, we only need to show that f(S)
is closed. If f(.S) has no accumulation points, then we are done. Suppose that b € R is an accumulation point
of f(S). Then, for each n € N, there is a y,, € N*(b;1/n) N f(S) and xz,, € S such that f(z,) = y,. Note
that the y,, can be selected to be distinct since there are infinitely many points in N*(b;1/n) N f(.5), for all



n € N. Therefore, rng (y) and rng (z) are infinite sets. Since rng (z) C S is bounded, the Bolzano-Weierstrass
theorem states that rng (z) has an accumulation point, which we denote by a € R. Since rng(x) C S, it
follows that a is an accumulation point of S; hence, since S is compact, a € S. Furthermore, since a is an
accumulation point of rng (x), there exists a subsequence = o o that converges to a. Since f is continuous,

Theorem (b) implies that
fla) = lim f(zs,)= klim Yo, = b.
—00

k—o0

Since f(a) = b, it follows that b € f(S). Therefore, f(S) is closed. O
As a corollary of Theorem [2.2] we show that the image contains its maximum and minimum value.

Corollary 2.3. Let S C R and f: S — R be continuous on S. If S is compact, then f(S) contains its
mazimum and minimum value.

Proof. Suppose that S is compact. Then, Theorem states that f(S) is compact. Therefore, f(S) C R
is bounded; so, the completeness axiom states that f(S) has an infimum and supremum. Let m denote the
supremum of f(S) and for the sake of contradiction suppose that m ¢ f(S). Then, for all € > 0, there
isay € f(S) such that m — e < y < m. Therefore, m is an accumulation point of f(5). Furthermore,
m ¢ f(S) contradicts f(S) being closed. A similar argument shows that f(S) contains its infimum. Thus,
f(S) contains its maximum and minimum value. O
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