
Completeness

Thomas R. Cameron

September 10, 2025

1 Suprema and Infema

We’ve seen how the real numbers can be constructed as equivalence classes of rational Cauchy sequences.
Using this construction, we are able to show that the real numbers are an ordered field and a metric space.
However, these properties also hold for the rational numbers. What makes the real numbers special is that
they include the irrational numbers, which leads to a property known as completeness.

Let S ⊆ R be non-empty. If there exists a m ∈ R such that m ≥ s for all s ∈ S, then m is an upper
bound for S. If m ∈ R satisfies m ≤ s for all s ∈ S, then m is a lower bound for S. If S is bounded above,
then its least upper bound is called its supremum, denoted supS. In particular, m = supS provided that

(a) For all s ∈ S, m ≥ s.

(b) If m′ < m, there exists a s′ ∈ S such that s′ > m.

If S is bounded below, then its greatest lower bound is called its infimum, denoted inf S. In particular,
m = inf S provided that

(a) For all s ∈ S, m ≤ s.

(b) If m′ > m, there exists a s′ ∈ S such that s′ < m.

The completeness of R guarantees that every non-empty subset of real numbers that is bounded above
has a least upper bound in R. This property does not hold for the rational numbers, for example, the set

T =
{
q ∈ Q : 0 ≤ q2 ≤ 2

}
does not have a supremum in Q. The following result proves the completness of R, note that this proof relies
heavily on the density of the rationals in the reals.

Theorem 1.1. Let S ⊆ R be non-empty and bounded above. Then, supS ∈ R.

Proof. Let s ∈ S and let m be an upper bound of S. By the density of the rationals, there exists a1, b1 ∈ Q
such that a1 < s and b1 > m. We define the rational sequences (an)

∞
n=1 and (bn)

∞
n=1 recursively as follows.

Given an, bn define

mn =
an + bn

2
.

If mn is an upper bound of S, then define an+1 = an and bn+1 = mn. Otherwise, there exists an x ∈ S such
that x > mn. By the density of the rationals, there exists a q ∈ Q such that mn < q < x. In this case, define
an+1 = q and bn+1 = bn.

Note that an is never an upper bound of S, while bn is always an upper bound of S. Furthermore,

an ≤ an+1 ≤ bn+1 ≤ bn

and

|bn − an| ≤
|b1 − a1|
2n−1

,

for all n ≥ 1.
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Therefore, the sequences (an)
∞
n=1 and (bn)

∞
n=1 are Cauchy. Indeed, let ϵ > 0 and select N ∈ N so that

|b1−a1|
2N−1 < ϵ. Then, for all m,n ≥ N

|an − am| ≤ |bm − am| ≤ |b1 − a1|
2n−1

< ϵ

and

|bn − bm| ≤ |bn − an| ≤
|b1 − a1|
2n−1

< ϵ.

Moreover, these sequences are members of the same equivalence class since their difference converges to zero.
Let α denote the real number corresponding to the equivalence class containing the sequences (an)

∞
n=1 and

(bn)
∞
n=1. We claim that α is the least upper bound of S.
If α were not an upper bound of S, then there exists x ∈ S such that α < x. By the density of the

rationals, there exists a q ∈ Q such that α < q < x. Therefore, by definition of the ordering on the reals,
there exists a rational ϵ > 0 and N ∈ N such that

n ≥ N ⇒ bn < q − ϵ.

However, each bn is an upper bound of S, so bn ≥ x > q for all n ∈ N, which leads to the contradiction
(q − ϵ) > q. Hence, α must be an upper bound of S.

In addition, if α were not a least upper bound, then there exists a β ∈ R such that β < α and β is an
upper bound of S. By density of the rationals, there exists a q ∈ Q such that β < q < α. Therefore, by
definition of the ordering on the reals, there exists a rational ϵ > 0 and N ∈ N such that

n ≥ N ⇒ an > q + ϵ.

However, no an is an upper bound of S, so for all x ∈ S, an < x < q, which leads to the contradiction
q > (q + ϵ). Hence, α must be the least upper bound of S.
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