Compactness

Thomas R. Cameron

September 26, 2025

1 Compactness

Compactness is a topological generalization of finiteness that allows us to extend results surrounding functions
over finite subsets of real numbers to functions over compact subsets of real numbers. A set S is compact if
whenever it is contained in the union of a family F of open sets, then it is contained in the union of some
finite number of sets in F. If F is a family of open sets whose union contains S, then F is called an open
cover of S. If G C F and G is also an open cover of S, then G is called a subcover of S. Thus, S is compact
if and only if every open cover of S contains a finite subcover.

When demonstrating that a set is compact, we must show that every open cover contains a finite subcover.
This is difficult to do in general; however, the Heinie-Borel theorem states that a subset of real numbers is
compact if and only if it is closed and bounded. To prove the Heini-Borel theorem, we first reequire the
following lemma.

Lemma 1.1. Let S C R be non-empty, closed, and bounded. Then, S has a mazimum and minimum
element.

Proof. We will prove that the least upper bound is an element of S. A similar proof that the greatest lower
bound is an element of S is left as an exercise.

Since S is bounded above, m = sup.S € R. Let ¢ € Ryy. Since m is a least upper bound of S, m — ¢
is not an upper bound of S. If m ¢ S, then there exists an x € S such that m — e < & < m, that is,
N*(m;e) N S # 0. However, this implies that m is an accumulation point of S, which contradicts S being
closed since closed sets contain all accumulation points. O

We are now ready to prove the Heine-Borel theorem.
Theorem 1.2. Let S CR. Then, S is compact if and only if S is closed and bounded.

Proof. Suppose that S is compact. For each n € N, define I,, = (—n,n). Then, each I, is open and

S C Ufbozl I,,. Since S is compact, there exists finitely many integers ny < ny < --- < ny such that

k
Sc Ul = I,
i=1

It follows that S is bounded since |z| < my for all x € S. For the sake of contradiction, suppose that S is
not closed. Then, S does not contain all of its accumulation points; let p € S’ \ S. For each n € N, define
U, =R\ [p—1/n,p+1/n]. Since [p — 1/n,p + 1/n] is closed, each U, is an open set. Moreover,

U Un=R\{p}25.

n=1

Since S is compact, there exists finitely many integers n; < ng < --- < ng such that S C Ule U,,. In fact,
since U, C U, if m < n, it follows that S C U,,. However, this implies that S N N(p;1/ni) = 0, which
contradicts p being an accumulation point of S.

Conversely, suppose that S is closed and bounded. Let F denote an open cover of S. For each z € R
define S, = SN (—oo,z] and let B denote the set of x such that S, is covered by a finite number of subsets



from F. If S is empty, then it is clearly compact; hence, we assume that S is non-empty. Therefore,
Lemma states that S has a minimum, say d. Also, Sq = {d}, which is covered by a single subset from F;
so, B is non-empty. For the sake of contradiction, suppose that B is bounded above and let m = sup B. If
m € S, there exists an Fy € F such that m € Fy. Since Fj is open, there exists an interval [a, b] C Fy such
that a < m < b. Since a < m and m = sup B, it follows that there exists an « € B such that ¢ < = < m.
Therefore, there exists Fi,..., Fy € F that cover S,. However, this implies that Fy, F1,..., Fyx cover Sy,
which contradicts m = sup B. If m ¢ S, then m is not a boundary point of S since S is closed. Therefore,
there exists an € € Ry such that N(m;e) NS = 0. However, this implies that S,,_ = me/2- Since
m — e € B, it follows that S, /2 is in B, which contradicts m = sup B. Therefore, B is not bounded above.
Since S is bounded above, there exists a p € B such that p > sup S. Furthermore, S, = S and since p € B
we conclude that S is compact. O
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