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1 Compactness

Compactness is a topological generalization of finiteness that allows us to extend results surrounding functions
over finite subsets of real numbers to functions over compact subsets of real numbers. A set S is compact if
whenever it is contained in the union of a family F of open sets, then it is contained in the union of some
finite number of sets in F . If F is a family of open sets whose union contains S, then F is called an open
cover of S. If G ⊆ F and G is also an open cover of S, then G is called a subcover of S. Thus, S is compact
if and only if every open cover of S contains a finite subcover.

When demonstrating that a set is compact, we must show that every open cover contains a finite subcover.
This is difficult to do in general; however, the Heinie-Borel theorem states that a subset of real numbers is
compact if and only if it is closed and bounded. To prove the Heini-Borel theorem, we first reequire the
following lemma.

Lemma 1.1. Let S ⊆ R be non-empty, closed, and bounded. Then, S has a maximum and minimum
element.

Proof. We will prove that the least upper bound is an element of S. A similar proof that the greatest lower
bound is an element of S is left as an exercise.

Since S is bounded above, m = supS ∈ R. Let ϵ ∈ R>0. Since m is a least upper bound of S, m − ϵ
is not an upper bound of S. If m /∈ S, then there exists an x ∈ S such that m − ϵ < x < m, that is,
N∗(m; ϵ) ∩ S ̸= ∅. However, this implies that m is an accumulation point of S, which contradicts S being
closed since closed sets contain all accumulation points.

We are now ready to prove the Heine-Borel theorem.

Theorem 1.2. Let S ⊆ R. Then, S is compact if and only if S is closed and bounded.

Proof. Suppose that S is compact. For each n ∈ N, define In = (−n, n). Then, each In is open and
S ⊆

⋃∞
n=1 In. Since S is compact, there exists finitely many integers n1 < n2 < · · · < nk such that

S ⊆
k⋃

i=1

Ini
= Ink

,

It follows that S is bounded since |x| < nk for all x ∈ S. For the sake of contradiction, suppose that S is
not closed. Then, S does not contain all of its accumulation points; let p ∈ S′ \ S. For each n ∈ N, define
Un = R \ [p− 1/n, p+ 1/n]. Since [p− 1/n, p+ 1/n] is closed, each Un is an open set. Moreover,

∞⋃
n=1

Un = R \ {p} ⊇ S.

Since S is compact, there exists finitely many integers n1 < n2 < · · · < nk such that S ⊆
⋃k

i=1 Uni
. In fact,

since Um ⊆ Un if m ≤ n, it follows that S ⊆ Unk
. However, this implies that S ∩ N(p; 1/nk) = ∅, which

contradicts p being an accumulation point of S.
Conversely, suppose that S is closed and bounded. Let F denote an open cover of S. For each x ∈ R

define Sx = S ∩ (−∞, x] and let B denote the set of x such that Sx is covered by a finite number of subsets
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from F . If S is empty, then it is clearly compact; hence, we assume that S is non-empty. Therefore,
Lemma 1.1 states that S has a minimum, say d. Also, Sd = {d}, which is covered by a single subset from F ;
so, B is non-empty. For the sake of contradiction, suppose that B is bounded above and let m = supB. If
m ∈ S, there exists an F0 ∈ F such that m ∈ F0. Since F0 is open, there exists an interval [a, b] ⊊ F0 such
that a < m < b. Since a < m and m = supB, it follows that there exists an x ∈ B such that a < x < m.
Therefore, there exists F1, . . . , Fk ∈ F that cover Sa. However, this implies that F0, F1, . . . , Fk cover Sb,
which contradicts m = supB. If m /∈ S, then m is not a boundary point of S since S is closed. Therefore,
there exists an ϵ ∈ R>0 such that N(m; ϵ) ∩ S = ∅. However, this implies that Sm−ϵ = Sm+ϵ/2. Since
m− ϵ ∈ B, it follows that Sm+ϵ/2 is in B, which contradicts m = supB. Therefore, B is not bounded above.
Since S is bounded above, there exists a p ∈ B such that p > supS. Furthermore, Sp = S and since p ∈ B
we conclude that S is compact.
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