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1 Countable Sets

Two sets A and B have the same cardinality, or are equinumerous, if there is a bijection f : A → B. We
denote equinumerous sets by A ∼ B. For each n ∈ N, define In = {1, 2, . . . , n}. A set A is finite if A = ∅ or
A ∼ In for some n ∈ N. If A is not finite, then it is infinite. Moreover, A is denumerable if A ∼ N. If A is
finite or denumerable, then A is countable; otherwise, A is uncountable.

In this section, we prove that the integers and rational numbers are countable sets. To begin, consider
the following preliminary results.

Lemma 1.1. Let B be a countable set and let A ⊆ B. Then, A is countable.

Proof. If A is finite, then we are done. Suppose that A is infinite, then B must also be infinite. Since B is
denumerable, there exists a bijection f : N → B. Now, define

S = {n ∈ N : f(n) ∈ A}

Since A is infinite and f is surjective, S must be infinite. The Well-Ordering property of N implies that S
has a least element, say s1. Similarly, the set S \ {s1} has a least element, say s2. In general, having chosen
s1, . . . , sk, let sk+1 be the least element of S \ {s1, . . . , sk}.

Now, define g : N → N by g(k) = sk. Since S is infinite, g is defined for every k ∈ N. Also, since
ak+1 /∈ {a1, . . . , ak}, g is injective. Thus, the composition f ◦ g is an injection from N into A. In fact, this
composition is a surjection. Indeed, let a ∈ A. Then, since f is surjective, there exists a n ∈ N such that
f(n) = a. Thus, n ∈ S and there exists a k ∈ N such that g(k) = n. Therefore, f(g(k)) = a.

Theorem 1.2. Let A be a non-empty set. Then, the following conditions are equivalent.

(a) A is countable.

(b) There exists an injection f : A → N.

(c) There exists a surjection f : N → A.

Next, we show that the Cartesian product of two countable sets is also countable.

Corollary 1.3. Let A and B be countable sets. Then, A×B is countable.

Proof. Since A and B are countable, Theorem 1.2 implies that there are injections f : A → N and g : B → N.
Define h : A×B → N by

h(a, b) = 2f(a) · 3g(b),
for all (a, b) ∈ A×B. Suppose that h(a, b) = h(a′, b′). Since the prime factorization of a number is unique, up
to the order of the factors, it follows that f(a) = f(a′) and g(b) = g(b′). Since f and g are injective, it follows
that a = a′ and b = b′. Therefore, h is injective, and Theorem 1.2 impliles that A×B is countable.

Since the integers correspond to the equivalence classes of an equivalence relation on N×N, Corollary 1.3
implies that the integers are countable. Moreover, since the ratoinals correspond to the equivalence classes
of an equivalence relation on Z × Z, Corollary 1.3 implies that the rationals are countable. We summarize
these results in the corollary below.

Corollary 1.4. The integers Z and the rationals Q are both countable.
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2 Uncountable Sets

In this section, we show that the set of real numbers is uncountable.

Theorem 2.1. The set of real numbers is uncountable.

Proof. By Lemma 1.1, the subset if any countable set is also countable. Hence, it suffices to show that the
interval J = (0, 1) is uncountable. For the sake of contradiction, suppose that J is countable. Then, we
could list its elements as follows

J = {xn : n ∈ N} .

Each element of J can be written as an infinite decimal expansions

x1 = 0.a11a12a13 · · · ,
x2 = 0.a21a22a23 · · · ,
x3 = 0.a31a32a33 · · · ,

...

where each aij ∈ {0, 1, . . . , 9}. We now define the real number y = 0.b1b2b3 · · · by

bi =

{
2 if aii ̸= 2,

3 if aii = 2.

Since y ̸= xi for any i ∈ N, we have a contradiction to our assumption that J is countable.
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