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1 Taylor Polynomials

Suppose that f(x) is n-times differentiable at x0. Then the nth Taylor polynomial of f(x) at x0 is

pn(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2!
+ · · ·+ f (n)(x0)

(x− x0)
n

n!

For example, let f(x) = ex and x0 = 0. Then, the n = 1, 2, 3
Taylor polynomials of f(x) at x0 are shown below:

p1(x) = 1 + x

p2(x) = 1 + x+
x2

2

p3(x) = 1 + x+
x2

2
+

x3

6

The plot of f(x) (blue), p1(x) (red), p2(x) (green), and p3(x)
(black) are shown on the right. Note that all Taylor polynomials
agree with f(x) at x0. Further, the first derivative of all Taylor
polynomials agree with f ′(x) at x0. The second derivative of
p2(x) agrees with f ′′(x) at x0 and the third derivative of p3(x)
agrees with f ′′′(x) at x0.

In general we have the following result regarding the value of pn(x) and its derivatives at x0.

Theorem 1.1. Suppose that f(x) is n-times differentiable at x0 and let pn(x) denote the nth Taylor poly-
nomial of f(x) at x0. Then,

f (k)(x0) = p(k)n (x0),

for all 0 ≤ k ≤ n.

2 Taylor Polynomial Remainder

We can use the Taylor polynomial to approximate a function. Moreover, we can bound the error in the
Taylor polynomial approximation. To this end, note that

f(x) = f(x0) +

∫ x

x0

f ′(t)dt.

1



Applying integration by parts,

f(x) = f(x0) +

∫ x

x0

f ′(t)dt

= f(x0) + (xf ′(x)− x0f
′(x0))−

∫ x

x0

tf ′′(t)dt

= f(x0) + x

(
f ′(x0) +

∫ x

x0

f ′′(t)dt

)
− x0f

′(x0)−
∫ x

x0

tf ′′(t)dt

= f(x0) + (x− x0)f
′(x0) +

∫ x

x0

(x− t)f ′′(t)dt

Next, we generalize the integral remainder formula for any n ≥ 1 using induction. Let n ≥ 1 and suppose
that

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n−1)(x0)
(x− x0)

n−1

(n− 1)!
+

∫ x

x0

(x− t)n−1

(n− 1)!
f (n)(t)dt.

Applying integration by parts,∫ x

x0

(x− t)n−1

(n− 1)!
f (n)(t)dt =

(x− x0)
n

n!
+

∫ x

x0

(x− t)n

n!
f (n+1)(t)dt.

Therefore, for any n ≥ 1, we have

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n−1)(x0)
(x− x0)

n−1

(n− 1)!
+ f (n)(x)

(x− x0)
n

n!
+

∫ x

x0

(x− t)n

n!
f (n+1)(t)dt.

Suppose that
∣∣f (n+1)(t)

∣∣ ≤ M , for all t in the interval [x0, x], then

|f(x)− pn(x)| =
∣∣∣∣∫ x

x0

(x− t)n

n!
f (n+1)(t)dt

∣∣∣∣ ≤ M
|x− x0|n+1

(n+ 1)!

As an example, we will use the Taylor series of f(x) = ex at x0 = 0 to approximate e to 2-decimal places.
To this end, note that all derivatives of f(x) are bounded above by e on the interval [0, 1]. Hence, the error
bound int he Taylor series approximation is given by

e
|x|n+1

(n+ 1)!
≤ e

(n+ 1)!
,

for all x in the interval [0, 1]. To guarantee 2-decimal places of accuracy, we need e
(n+1)! ≤ 0.005, i.e.,

(n+ 1)! ≥ e

0.005
= 500e.

Note that 7! = 5040, which is significantly bigger than 500e. Hence, n = 6 is sufficient for our Taylor series
approximation. In conclusion, the approximation of e given by the n = 6th Taylor series approximation of
f(x) = ex at x0 = 0 is

1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+

1

720
≈ 2.7181.

Which is exact up to the 4th decimal place.
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