Calculus in Polar Coordinates

Thomas R. Cameron

December 1, 2025

1 Tangent Lines, Arc Length and Surface Area

Consider the function $r = f(\theta)$, where f is a differentiable function in θ . In cartesian coordinates, we have $x = f(\theta)\cos(\theta)$ and $y = f(\theta)\sin(\theta)$. Therefore,

$$\frac{dy}{dx} = \frac{y'(\theta)}{x'(\theta)} = \frac{f'(\theta)\sin(\theta) + f(\theta)\cos(\theta)}{f'(\theta)\cos(\theta) - f(\theta)\sin(\theta)}$$

For example, if $r = \sin(\theta)$, for $0 \le \theta \le \pi$, then

$$\frac{dy}{dx} = \frac{2\sin(\theta)\cos(\theta)}{\cos^2(\theta) - \sin^2(\theta)}$$

Hence, the graph of $r = \sin(\theta)$ has a horizontal tangent line when $\theta = 0$ and $\theta = \pi$, and a vertical tangent line when $\theta = \pi/4$ and $\theta = 3\pi/4$.

Let $x = f(\theta)\cos(\theta)$ and $y = f(\theta)\sin(\theta)$, for $\alpha \le \theta \le \beta$. Suppose that the curve parameterized by x and y is never traced more than once. Then, the arc length over $[\alpha, \beta]$ is given by

$$L = \int_0^\beta \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta = \int_0^\beta \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta.$$

For example, if $r = \sin(\theta)$, $\alpha = 0$, $\beta = \pi$, then

$$L = \int_0^{\pi} \sqrt{\sin^2(\theta) + \cos^2(\theta)} d\theta$$
$$= \int_0^{\pi} d\theta = \pi.$$

Next, suppose that the curve parameterized by x and y is never below the x-axis. Furthermore, suppose the curve is revolved about the x-axis. Then, the area of the surface of revolution is given by

$$S = \int_{\alpha}^{\beta} 2\pi f(\theta) \sin(\theta) \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta.$$

For example, if $r = \sin(\theta)$, $\alpha = \pi/4$, and $\beta = 3\pi/4$, then

$$S = \int_{\pi/4}^{3\pi/4} 2\pi \sin^2(\theta) \sqrt{\sin^2(\theta) + \cos^2(\theta)} d\theta$$

$$= 2\pi \int_{\pi/4}^{3\pi/4} \sin^2(\theta) d\theta$$

$$= 2\pi \left(-\frac{1}{2} \cos(\theta) \sin(\theta) \Big|_{\pi/4}^{3\pi/4} + \frac{1}{2} \theta \Big|_{\pi/4}^{3\pi/4} \right)$$

$$= 2\pi \left(-\frac{1}{2} \left(-\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{3\pi}{4} - \frac{\pi}{4} \right) \right)$$

$$= 2\pi \left(\frac{1}{2} + \frac{\pi}{4} \right) = \pi \left(1 + \frac{\pi}{2} \right).$$

2 Area in Polar Coordinates

Consider the function $r = f(\theta)$, where f is continuous and non-negative over the interval $\alpha \leq \theta \leq \beta$. The region bounded by the graph of f and the radial lines $\theta = \alpha$ and $\theta = \beta$ is shown in Figure 1 (left).

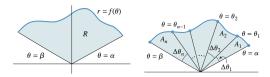


Figure 1: Region bounded by $r = f(\theta)$, $\theta = \alpha$, and $\theta = \beta$.

To approximate the area of this region, we subdivide the interval $[\alpha, \beta]$ into n subintervals

$$\alpha = \theta_0 < \theta_1 < \dots < \theta_{n-1} < \theta_n = \beta.$$

These n subintervals correspond to n sectors of the region as shown in Figure 1 (right). The area of the kth sector can be approximated by a sector of a circle of radius $f(\theta_{k^*})$ and central angle $\Delta\theta_k$, as shown in Figure 2, which is given by $\frac{1}{2}\Delta\theta_k f(\theta_{k^*})^2$.

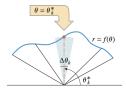


Figure 2: Region bounded by $r = f(\theta)$, $\theta = \alpha$, and $\theta = \beta$.

Therefore, the area of the entire region can be approximated by the following summation

$$A \approx \sum_{i=1}^{n} \frac{1}{2} \Delta \theta_i f(\theta_{i^*})^2.$$

Taking the limit as $n \to \infty$ gives us

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} \Delta \theta_i f(\theta_{i^*})^2$$
$$= \int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^2 d\theta,$$

where $0 < \beta - \alpha \le 2\pi$.

For example, consider $r = \cos(2\theta)$. The pedal determined by the interval $[-\pi/4, \pi/4]$ has area

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} \cos^2(2\theta) d\theta$$

$$= \frac{1}{4} \int_{-\pi/2}^{\pi/2} \cos^2(u) du$$

$$= \frac{1}{4} \left(\frac{1}{2} \cos(u) \sin(u) + \frac{1}{2} u \right) \Big|_{-\pi/2}^{\pi/2} = \frac{\pi}{8}.$$