Partial Fractions

Thomas R. Cameron

September 17, 2025

1 Partial Fraction Decomposition

The method of partial fraction decomposition seeks to decompose a proper rational function (degree of numerator is less than degree of denominator) into a sum of fractions whose denominator are powers of either linear or irreducible quadratics. For example, consider the following fraction:

$$\frac{5x-10}{x^2-3x-4} = \frac{5x-10}{(x-4)(x+1)}.$$

Since the denominator of this fraction is a product of two linear factors, we seek the following decomposition

$$\frac{5x-10}{(x-4)(x+1)} = \frac{A}{x-4} + \frac{B}{x+1},$$

where A and B are constants to be determined. To determine the values of A and B, we multiply both sides of the above equation by (x-4)(x+1):

$$5x - 10 = A(x+1) + B(x-4) = x(A+B) + (A-4B).$$

We obtain the following equations to solve for A and B:

$$5 = A + B$$
$$-10 = A - 4B$$

Subtracting the 2nd equation from the 1st equation gives 15 = 5B. Hence, B = 3 and A = 2 and it follows that

$$\frac{5x-10}{(x-4)(x+1)} = \frac{2}{x-4} + \frac{3}{x+1}.$$

2 The Form of a Partial Fraction Decomposition

Consider the proper rational function P(x)/Q(x). The first step of a partial fraction decomposition is to factor Q(x) into irreducible linear and quadratic factors. Then, collect all repeated factors so that Q(x) is expressed as a product of distinct factors of the form

$$(ax+b)^m$$
 and $(ax^2+bx+c)^m$.

For each factor of $(ax + b)^m$, the partial fraction decomposition contains the following sum of m partial fractions:

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_m}{(ax+b)^m}.$$

For each factor of $(ax^2 + bx + c)^m$, the partial fraction decomposition constains the following sum of m partial fractions:

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_mx + B_m}{(ax^2 + bx + c)^m}$$

For example, consider the rational function

$$\frac{2x+4}{x^3-2x^2} = \frac{2x+4}{x^2(x-2)}$$

$$= \frac{2x+4}{x \cdot x \cdot (x-2)}$$

$$= \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{A_3}{x-2}$$

Multiplying both sides of the above equation by $x^2(x-2)$ gives

$$2x + 4 = A_1x(x - 2) + A_2(x - 2) + A_3x^2 = x^2(A_1 + A_3) + x(A_2 - 2A_1) - 2A_2.$$

Pluggin in x = 2 reveals $4A_3 = 8$, i.e., $A_3 = 2$. Pluggin in x = 0 reveals $-2A_2 = 4$, i.e., $A_2 = -2$. There is no value of x that isolates A_1 ; however, $A_1 + A_3 = 0$ since there is no x^2 term on the left hand side. Therefore, $A_1 = -A_3 = -2$, so we have the following decomposition

$$\frac{2x+4}{x^3-2x^2} = -\frac{2}{x} - \frac{2}{x^2} + \frac{2}{x-2}.$$

As a final example, consder the rational function

$$\begin{split} \frac{x^2 + x - 2}{3x^3 - x^2 + 3x - 1} &= \frac{x^2 + x - 2}{x^2(3x - 1) + (3x - 1)} \\ &= \frac{x^2 + x - 2}{(3x - 1)(x^2 + 1)} \\ &= \frac{A_1}{3x - 1} + \frac{A_2x + B_2}{x^2 + 1} \end{split}$$

Multiplying both sides of the above equation by $(3x-1)(x^2+1)$ gives

$$x^{2} + x - 2 = A_{1}(x^{2} + 1) + (A_{2}x + B_{2})(3x - 1) = x^{2}(A_{1} + 3A_{2}) + x(3B_{2} - A_{2}) + (A_{1} - B_{2}).$$

By equating corresponding coefficients, we end up with the following system of equations

$$A_1 + 3A_2 + 0B_2 = 1$$

$$0A_1 - A_2 + 3B_2 = 1$$

$$A_1 + 0A_2 - B_2 = -2$$

Solving this system of equations yields

$$A_1 = -\frac{7}{5}, \ A_2 = \frac{4}{5}, \ A_3 = \frac{3}{5}.$$

Therefore,

$$\frac{x^2 + x - 2}{3x^3 - x^2 + 3x - 1} = -\frac{1}{5} \cdot \frac{7}{3x - 1} + \frac{1}{5} \cdot \frac{4x + 3}{x^2 + 1}.$$