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1 Alternating Series

Alternating series can be written in the following form
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where the terms aj are assumed to be positive.
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An alternating series converges if a1 < ag, for all £ > 1, and %
limg o0 ax = 0. Refer to the figure on the right, note that the odd a;
number terms form a decreasing sequence that is bounded below. «a,——
Similarly, the even number terms form an increasing sequence < a5
that is bounded above. Moreover, the bound for the even and
odd terms is the same; hence, the series must converge to that -
bound.
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Note that the alternating harmonic series Z;’;l(—l)k“‘l% converges. As another example, consider the
alternating series
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Furthermore,
lim ap = lim u =0.
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Therefore, this alternating series converges.
Let S denote the value of a convergent alternate series. Then, s, < 5 < 5,41 Or Sp41 < S < 55, for all
n > 1. Therefore,
|S_ 5n| < Gpya-

For example, the alternating harmonic series converges to In(2). The 10th partial sum is
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Note that In(2) — 3527 ~ 0.05 < .



2 Absolute vs Conditional Convergence

A series Y po ; uy is said to converge absolutely if the series of absolute values
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converges. If the series of absolute values diverges, then we say the original series diverges absolutely. A series
is conditionaly convergent if it converges but diverges absolutely. For example, the alternating harmonic
series is conditionaly convergent. As another example, consider the series alternating series > po (—1/2)F.
The series of absolute values
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is a geometric series with ratio 1/2. Hence, the give series converges absolutely.
If a series converges absolutely, then the original series also converges. Indeed, suppose that Y p- | ug

converges absolutely. Note that
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Note that >~ | (ug + |ug]) < 2>~ |ukl; hence, the direct comparison test implies that the series > - (ug + |ug|)
converges. Therefore, 77 | uy converges since it is the sum of two convergent series.
3 Exercises

Determine whether the following series converge or diverge. Classify any convergent series as absolutely or
conditionally convergent.
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