

Polynomial and Rational Functions

Thomas R. Cameron

January 12, 2026

Key Topics

- Polynomial functions and their graphs
- Solving polynomial equations
- Rational functions
- Domain and range of rational functions

1 Polynomial Functions

Definition. A polynomial function is a function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,$$

where a_0, a_1, \dots, a_n are real numbers and n is a nonnegative integer.

Polynomial functions are defined for all real numbers and are continuous everywhere. These properties will be essential when evaluating limits and computing derivatives.

1.1 Graphs of Polynomial Functions

Figure 1 shows a typical example of a polynomial graph.

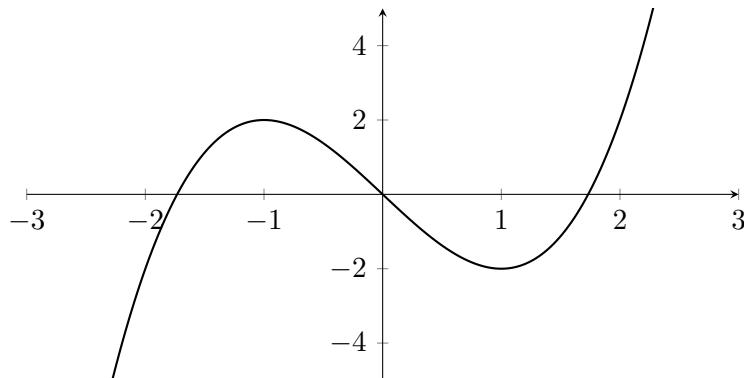


Figure 1: The graph of the polynomial function $f(x) = x^3 - 3x$, illustrating smoothness and end behavior.

Polynomial graphs are smooth and have no breaks or corners, a fact that will be used later when discussing continuity and differentiability.

2 Solving Polynomial Equations

Many problems in calculus reduce to solving polynomial equations, particularly when finding critical points or evaluating limits algebraically.

2.1 Factoring

Example

Solve

$$x^3 - 3x = 0.$$

Factoring gives

$$x(x^2 - 3) = 0,$$

so the solutions are $x = 0$ and $x = \pm\sqrt{3}$.

2.2 Completing the Square

Completing the square is useful when factoring is not straightforward.

Example

Solve

$$x^2 - 4x + 1 = 0.$$

Rewrite as

$$x^2 - 4x = -1,$$

and complete the square:

$$x^2 - 4x + 4 = 3 \quad \Rightarrow \quad (x - 2)^2 = 3.$$

Thus,

$$x = 2 \pm \sqrt{3}.$$

3 Rational Functions

Definition. A rational function is a function of the form

$$f(x) = \frac{p(x)}{q(x)},$$

where $p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$.

Unlike polynomials, rational functions are not defined for all real numbers. Determining their domains requires algebraic analysis.

4 Domain of a Rational Function

The domain of a rational function consists of all real numbers for which the denominator is nonzero.

Example

Find the domain of

$$f(x) = \frac{x^2 - 1}{x - 1}.$$

Factoring the numerator gives

$$f(x) = \frac{(x - 1)(x + 1)}{x - 1}.$$

The denominator is zero when $x = 1$, so the domain is

$$(-\infty, 1) \cup (1, \infty).$$

Example

Consider the following proper rational function

$$f(x) = \frac{x}{x^2 - 1} = \frac{x}{(x - 1)(x + 1)}.$$

An important algebraic technique known as partial fraction decomposition is used to decompose the rational function into a sum of rationals with simplified denominators. In this example, we have

$$\frac{x}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1}.$$

Multiplying both sides by the denominator gives

$$x = A(x + 1) + B(x - 1),$$

which implies that $A = 1/2$ and $B = -1/2$. Therefore,

$$f(x) = \frac{x}{(x - 1)(x + 1)} = \frac{1}{2} \frac{1}{x - 1} - \frac{1}{2} \frac{1}{x + 1}.$$

5 Graphical Behavior of Rational Functions

Although the factor $(x - 1)$ cancels algebraically, the function is still undefined at $x = 1$.

Figure 2 illustrates this behavior.

This type of discontinuity plays a key role in limit computations.

6 Why This Matters for Calculus

- Factoring and algebraic simplification are essential for evaluating limits.
- Rational functions often produce indeterminate forms such as $\frac{0}{0}$.
- Understanding domains prevents illegal algebraic operations.

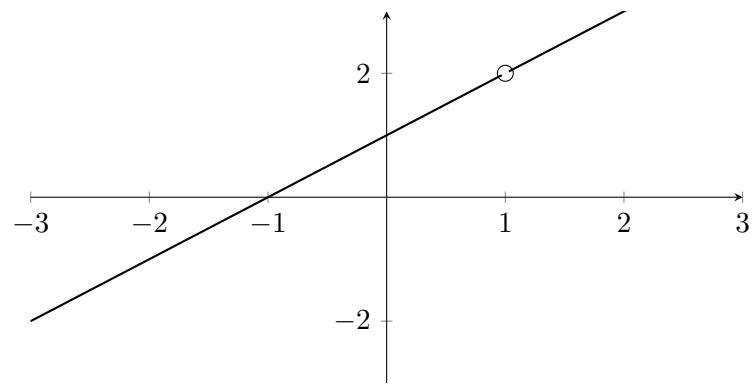


Figure 2: The graph of $f(x) = \frac{x^2 - 1}{x - 1}$, showing a hole where the function is undefined.