

Inverse Functions

Math 140: Calculus with Analytic Geometry

Key Topics

- Function notation, domain, and range
- Function composition
- One-to-one functions
- Inverse functions and reflection across $y = x$
- Restricting domains to obtain inverses

1 Functions, Domain, and Range

Definition. A function $f: A \rightarrow B$ assigns to each element of the set A exactly one element of the set B . The set A is called the domain of f , and the set B is called the codomain. The range of f , denoted $\text{Range}(f)$, is the set of all $y \in B$ such that $f(x) = y$ for some $x \in A$.

2 Function Composition

Definition. If $f: A \rightarrow B$ and $g: B \rightarrow C$, the composition of g with f is the function

$$(g \circ f): A \rightarrow C, \quad (g \circ f)(x) = g(f(x)).$$

Example

Let $f(x) = 2x + 1$ and $g(x) = x^2$. Then

$$(g \circ f)(x) = (2x + 1)^2, \quad (f \circ g)(x) = 2x^2 + 1.$$

Remark. In general, $g \circ f \neq f \circ g$.

3 One-to-One Functions

Definition. A function $f: A \rightarrow B$ is one-to-one if

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

Note that \implies denotes the logical implication, the statement $p \implies q$ can be read as “if p then q ” or “ q whenever p .”

Graphically, a function is one-to-one if every horizontal line intersects its graph at most once.

4 Inverse Functions

Definition. Let $f: A \rightarrow B$ be a function. The inverse function of f is a function

$$f^{-1}: \text{Range}(f) \rightarrow A$$

such that

$$f^{-1}(f(x)) = x \quad \text{for all } x \in A, \quad f(f^{-1}(y)) = y \quad \text{for all } y \in \text{Range}(f).$$

Remark. An inverse function exists if and only if f is one-to-one. When passing to the inverse, the domain and range are interchanged.

Geometric interpretation

The graph of f^{-1} is a reflection of the graph of f across the line $y = x$.

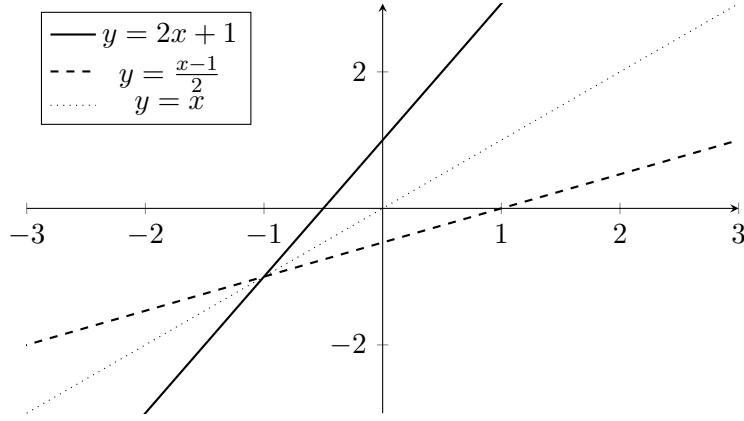


Figure 1: The graphs of a function and its inverse, reflected across the line $y = x$.

Figure 1 illustrates that each point (a, b) on the graph of f corresponds to the point (b, a) on the graph of f^{-1} .

5 Functions Without Inverses

Many commonly encountered functions are not one-to-one on their natural domains.

Quadratic function. The function $f(x) = x^2$ with domain \mathbb{R} is not one-to-one, since $f(2) = f(-2)$.

Figure 2 shows that horizontal lines intersect the graph of x^2 more than once.

Restricting the domain. If we restrict the domain to $[0, \infty)$, then $f: [0, \infty) \rightarrow [0, \infty)$ becomes one-to-one and has inverse $f^{-1}(x) = \sqrt{x}$.

Trigonometric examples. The cosine function is not one-to-one on \mathbb{R} , but restricting its domain to $[0, \pi]$ produces an inverse. The tangent function is one-to-one on $(-\frac{\pi}{2}, \frac{\pi}{2})$ and has an inverse on that interval.

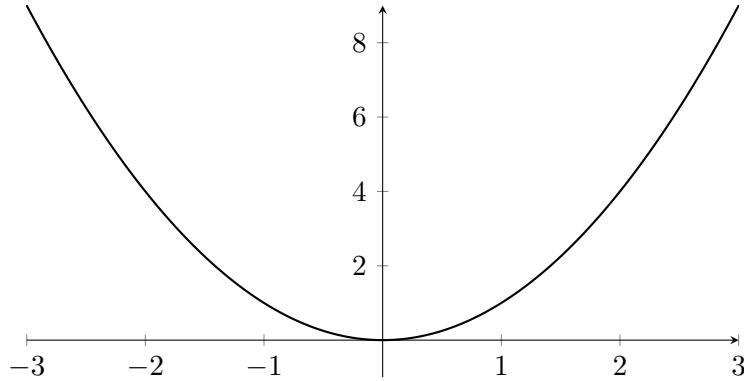


Figure 2: The graph of $f(x) = x^2$, which fails the horizontal line test.

6 Finding Inverses Algebraically

Example (Linear)

Let $f(x) = 3x - 5$ with domain \mathbb{R} and range \mathbb{R} . Solving $y = 3x - 5$ for x gives

$$f^{-1}(x) = \frac{x + 5}{3}.$$

Example (Rational)

Let $f(x) = \frac{x - 1}{x + 2}$ with domain $\mathbb{R} \setminus \{-2\}$ and range $\mathbb{R} \setminus \{1\}$. Solving $y = \frac{x - 1}{x + 2}$ for x yields

$$f^{-1}(x) = \frac{-1 - 2x}{x - 1},$$

with domain $\mathbb{R} \setminus \{1\}$ and range $\mathbb{R} \setminus \{-2\}$.

7 Why This Matters for Calculus

- Inverse functions explain the meaning of inverse trigonometric and logarithmic functions.
- Domain restrictions determine where derivatives and integrals are defined.
- Inverses naturally arise when solving equations involving derivatives.