

## Homework 02

Math 140-002: Calculus I (Spring 2026)  
Week 2 (Jan 19–Jan 23, 2026)

**Relevant topics:** Limits (one-sided/two-sided), limit laws, infinite limits, continuity, vertical asymptotes,  $\epsilon$ – $\delta$  definition

**Due:** Tuesday, Jan 27, 2026.

**Instructions:** Show your work clearly. Problems 1–6 emphasize computational fluency; Problems 7–12 emphasize concepts and communication.

1. Evaluate  $\lim_{x \rightarrow 2} (3x - 1)$ .
2. Evaluate  $\lim_{x \rightarrow -1} \frac{x^2 - 1}{x + 1}$ .
3. Evaluate  $\lim_{x \rightarrow 0} \frac{\sin(5x)}{x}$ .
4. Evaluate  $\lim_{x \rightarrow 0} \frac{e^x - 1}{x}$ .
5. Evaluate  $\lim_{x \rightarrow 1} \frac{5x^2 + 1}{2x^2 - 3}$ .
6. Evaluate  $\lim_{x \rightarrow \infty} \ln x$ .
7. State the  $\epsilon$ – $\delta$  definition of  $\lim_{x \rightarrow a} f(x) = L$ . Then draw a labeled picture that illustrates the definition.
8. Give an example of a function with a removable discontinuity at  $x = 1$  and explain why it is removable.
9. Explain why the two-sided limit fails to exist if the one-sided limits are different.
10. For  $f(x) = \begin{cases} 2, & x < 1 \\ 5, & x \geq 1 \end{cases}$ , find  $\lim_{x \rightarrow 1^-} f(x)$  and  $\lim_{x \rightarrow 1^+} f(x)$  and conclude about  $\lim_{x \rightarrow 1} f(x)$ .
11. Consider  $g(x) = \frac{1}{(x-2)^2}$ . Describe the vertical asymptote and explain what  $\lim_{x \rightarrow 2} g(x)$  tells you.
12. Let  $h(x) = \frac{x^2 - 1}{x - 1}$  for  $x \neq 1$ . (a) Find  $\lim_{x \rightarrow 1} h(x)$ . (b) Define  $h(1)$  so that  $h$  is continuous at 1. (c) Define  $h(1)$  in a different way so the limit still exists but  $h$  is not continuous at 1. Explain the difference.